Penalty Function Based Critical Point Approach to Compute Real Witness Solution Points of Polynomial Systems

We present a critical point method based on a penalty function for finding certain solution (witness) points on real solutions components of general real polynomial systems. Unlike other existing numerical methods, the new method does not require the input polynomial system to have pure dimension or satisfy certain regularity conditions.

[1]  Hoon Hong,et al.  Improvements in cad-based quantifier elimination , 1990 .

[2]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[3]  Lihong Zhi,et al.  Computing real solutions of polynomial systems via low-rank moment matrix completion , 2012, ISSAC.

[4]  B. Bank,et al.  Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case , 1996 .

[5]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[6]  Marc Giusti,et al.  Point searching in real singularcomplete intersection varieties: algorithms of intrinsic complexity , 2013, Math. Comput..

[7]  Yong Feng,et al.  Computing real witness points of positive dimensional polynomial systems , 2017, Theor. Comput. Sci..

[8]  Fabrice Rouillier,et al.  Finding at Least One Point in Each Connected Component of a Real Algebraic Set Defined by a Single Equation , 2000, J. Complex..

[9]  Jonathan D. Hauenstein,et al.  Adaptive Multiprecision Path Tracking , 2008, SIAM J. Numer. Anal..

[10]  P. Rostalski,et al.  Semidefinite characterization and computation of real radical ideals , 2006 .

[11]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[12]  Jan Verschelde,et al.  Regeneration, local dimension, and applications in numerical algebraic geometry , 2009 .

[13]  Jonathan D. Hauenstein,et al.  Cell decomposition of almost smooth real algebraic surfaces , 2013, Numerical Algorithms.

[14]  Zhengfeng Yang,et al.  Verified error bounds for real solutions of positive-dimensional polynomial systems , 2013, ISSAC '13.

[15]  Fabrice Rouillier,et al.  Real Solving for Positive Dimensional Systems , 2002, J. Symb. Comput..

[16]  Ye Lu Finding all real solutions of polynomial systems , 2006 .

[17]  Éric Schost,et al.  Properness Defects of Projections and Computation of at Least One Point in Each Connected Component of a Real Algebraic Set , 2004, Discret. Comput. Geom..

[18]  Marc Giusti,et al.  Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..

[19]  Monique Laurent,et al.  Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals , 2008, Found. Comput. Math..

[20]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[21]  Jonathan D. Hauenstein,et al.  What is numerical algebraic geometry , 2017 .

[22]  G. Stewart Perturbation theory for the singular value decomposition , 1990 .

[23]  Monique Laurent,et al.  A prolongation-projection algorithm for computing the finite real variety of an ideal , 2008, Theor. Comput. Sci..

[24]  Anton Leykin,et al.  Robust Certified Numerical Homotopy Tracking , 2011, Foundations of Computational Mathematics.

[25]  J. Hauenstein Numerically Computing Real Points on Algebraic Sets , 2011, Acta Applicandae Mathematicae.

[26]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[27]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[28]  Éric Schost,et al.  A Baby Step–Giant Step Roadmap Algorithm for General Algebraic Sets , 2012, Found. Comput. Math..

[29]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[30]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[31]  Wenyuan Wu,et al.  Finding points on real solution components and applications to differential polynomial systems , 2013, ISSAC '13.

[32]  Changbo Chen,et al.  Triangular decomposition of semi-algebraic systems , 2013, J. Symb. Comput..

[33]  Jonathan D. Hauenstein,et al.  Validating the Completeness of the Real Solution Set of a System of Polynomial Equations , 2016, ISSAC.