Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN

This work presents nonlocal pseudopotential calculations based on realistic, effective atomic potentials of the wurtzite phase of GaN, InN, and AlN. A formulation formulation for the model effective atomic potentials has been introduced. For each of the constitutive atoms in these materials, the form of the effective potentials is optimized through an iterative scheme in which the band structures are recursively calculated and selected features are compared to experimental and/or ab initio results. The optimized forms of the effective atomic potentials are used to calculate the band structures of the binary compounds, GaN, InN, and AlN. The calculated band structures are in excellent overall agreement with the experimental/ab initio values, i.e., the energy gaps at high-symmetry points, valence-band ordering, and effective masses for electrons match to within 3%, with a few values within 5%. The values of the energy separation, effective masses, and nonparabolicity coefficients for several secondary valle...

[1]  Alan Francis Wright,et al.  Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN , 1997 .

[2]  Jin Seo Im,et al.  Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN , 1997 .

[3]  S. Denbaars,et al.  Characterization of an AlGaN/GaN two-dimensional electron gas structure , 2000 .

[4]  M. Willander,et al.  III–nitrides: Growth, characterization, and properties , 2000 .

[5]  Christensen,et al.  Optical and structural properties of III-V nitrides under pressure. , 1994, Physical review. B, Condensed matter.

[6]  Muoz,et al.  High-pressure phase of gallium nitride. , 1991, Physical review. B, Condensed matter.

[7]  J. Pankove Optical properties of GaN , 1975 .

[8]  A.-B. Chen,et al.  Theory of AlN, GaN, InN and their alloys , 1997 .

[9]  F. Bechstedt,et al.  Ab initio study of structural, dielectric, and dynamical properties of GaN , 1998 .

[10]  H. Amano,et al.  Free and bound excitons in thin wurtzite GaN layers on sapphire , 1996 .

[11]  Shuji Nakamura,et al.  InGaN-based violet laser diodes , 1999 .

[12]  Hadis Morkoç,et al.  Emerging gallium nitride based devices , 1995, Proc. IEEE.

[13]  K. Reimann,et al.  Free excitons with n=2 in bulk GaN , 1997 .

[14]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[15]  J. Orton Acceptor binding energy in GaN and related alloys , 1995 .

[16]  M. Shur,et al.  Electron transport in wurtzite indium nitride , 1998 .

[17]  Marc Ilegems,et al.  Infrared Lattice Vibrations and Free-Electron Dispersion in GaN , 1973 .

[18]  P. Vogl,et al.  Electronic structure of biaxially strained wurtzite crystals GaN, AlN, and InN , 1996 .

[19]  Kim,et al.  Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. , 1996, Physical review. B, Condensed matter.

[20]  M. Tischler,et al.  Al 0.15 Ga 0.85 N/GaN heterostructures: Effective mass and scattering times , 1998 .

[21]  K. Brennan,et al.  Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN , 1997 .

[22]  M. Khan,et al.  Fundamental optical transitions in GaN , 1996 .

[23]  T. Uenoyama,et al.  First principles calculation of effective mass parameters of GaN , 1997 .

[24]  Michael S. Shur,et al.  Transient electron transport in wurtzite GaN, InN, and AlN , 1999 .

[25]  Inspec,et al.  Properties of group III nitrides , 1994 .

[26]  Takayuki Sota,et al.  First-principles study on electronic and elastic properties of BN, AlN, and GaN , 1998 .

[27]  B. Jogai Effective masses of wurtzite GaN calculated from an empirical tight binding model , 1998 .

[28]  M. Shur,et al.  The cyclotron resonance effective mass of two-dimensional electrons confined at the GaN/AlGaN interface , 1996 .

[29]  V. Heine,et al.  The screened model potential for 25 elements , 1965 .

[30]  K. Brennan,et al.  Ensemble Monte Carlo study of electron transport in wurtzite InN , 1999 .

[31]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[32]  M. Shur,et al.  Monte Carlo simulation of electron transport in wurtzite aluminum nitride , 1998 .

[33]  Oliver Ambacher,et al.  Growth and applications of Group III-nitrides , 1998 .

[34]  Lester F. Eastman,et al.  Results, Potential and Challenges of High Power GaN-Based Transistors , 1999 .

[35]  W. Knap,et al.  Determination of the effective mass of GaN from infrared reflectivity and Hall effect , 1996 .

[36]  O. Sankey,et al.  Semiempirical tight-binding band structures of wurtzite semiconductors: AlN, CdS, CdSe, ZnS, and ZnO , 1983 .

[37]  Tow Chong Chong,et al.  Electronic properties of zinc‐blende GaN, AlN, and their alloys Ga1−xAlxN , 1996 .

[38]  F. Peeters,et al.  CYCLOTRON-RESONANCE MASS OF TWO-DIMENSIONAL ELECTRONS IN GAN/ALXGA1-XN HETEROSTRUCTURES , 1997 .

[39]  Tansley,et al.  Pseudopotential band structure of indium nitride. , 1986, Physical review. B, Condensed matter.

[40]  J. Chelikowsky,et al.  Electronic Structure and Optical Properties of Semiconductors , 1989 .

[41]  T. Uenoyama,et al.  Effect of crystal symmetry, strain and spin–orbit coupling on electronic and optical properties of III-nitrides , 1998 .

[42]  Stephen J. Pearton,et al.  GaN and related materials II , 2000 .

[43]  Dirk Vogel,et al.  STRUCTURAL AND ELECTRONIC PROPERTIES OF GROUP-III NITRIDES , 1997 .

[44]  Hadis Morkoç,et al.  Principles and technology of MODFETs , 1991 .

[45]  K. Brennan,et al.  Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN , 2000 .

[46]  W. Ching,et al.  A minimal basis semi-ab initio approach to the band structures of semiconductors , 1985 .

[47]  David J. Singh Planewaves, Pseudopotentials, and the LAPW Method , 1993 .

[48]  Jacek M. Baranowski,et al.  Electron effective mass in hexagonal GaN , 1999 .

[49]  K. Brennan,et al.  Comparison of electron and hole initiated impact ionization in zincblende and wurtzite phase gallium nitride , 1997 .

[50]  Theeradetch Detchprohm,et al.  Relaxation Process of the Thermal Strain in the GaN/α-Al2O3 Heterostructure and Determination of the Intrinsic Lattice Constants of GaN Free from the Strain , 1992 .

[51]  Theeradetch Detchprohm,et al.  Shallow donors in GaN—The binding energy and the electron effective mass , 1995 .

[52]  Ching,et al.  Electronic, optical, and structural properties of some wurtzite crystals. , 1993, Physical review. B, Condensed matter.

[53]  Zunger,et al.  Empirical atomic pseudopotentials for AlAs/GaAs superlattices, alloys, and nanostructures. , 1994, Physical review. B, Condensed matter.

[54]  Yotaro Murakami,et al.  Preparation and optical properties of Ga1−xInxN thin films , 1975 .

[55]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[56]  L. Reining,et al.  The electronic structure of gallium nitride , 1993 .

[57]  H. K. Ng,et al.  Magneto‐optical studies of GaN and GaN/AlxGa1−xN: Donor Zeeman spectroscopy and two dimensional electron gas cyclotron resonance , 1996 .

[58]  T. Uenoyama,et al.  First-Principles Calculation of Effective Mass Parameters of Gallium Nitride. , 1995 .

[59]  Nelson,et al.  Explicit treatment of the gallium 3d electrons in GaN using the plane-wave pseudopotential method. , 1994, Physical review. B, Condensed matter.

[60]  K. Brennan,et al.  Full band Monte Carlo simulation of zincblende GaN MESFET's including realistic impact ionization rates , 1999 .

[61]  R. Powell,et al.  Optical Absorption and Vacuum-Ultraviolet Reflectance of GaN Thin Films , 1970 .

[62]  Kang L. Wang,et al.  Magnetotransport study on the two-dimensional electron gas in AlGaN/GaN heterostructures , 1998 .

[63]  R. A. Abram,et al.  Electronic structure calculations on nitride semiconductors , 1999 .

[64]  Chan,et al.  First-principles total-energy calculation of gallium nitride. , 1992, Physical review. B, Condensed matter.

[65]  M. Shur,et al.  Monte Carlo simulation of electron transport in gallium nitride , 1993 .

[66]  Theeradetch Detchprohm,et al.  Determination of the Conduction Band Electron Effective Mass in Hexagonal GaN , 1995 .

[67]  P. Vogl,et al.  Electronic Structure of Biaxially-Strained Wurtzite Crystals GaN and AlN , 1996 .

[68]  Jean-Yves Duboz,et al.  GaN as seen by the industry , 1999 .

[69]  J. Dow,et al.  Band structure of InN , 1987 .

[70]  Tsai,et al.  Pseudofunction theory of the electronic structure of InN. , 1988, Physical review. B, Condensed matter.

[71]  Michael S. Shur,et al.  Monte Carlo calculation of velocity-field characteristics of wurtzite GaN , 1997 .

[72]  K. Brennan,et al.  Electron transport characteristics of GaN for high temperature device modeling , 1998 .

[73]  K. Miwa,et al.  First-principles calculation of the structural, electronic, and vibrational properties of gallium nitride and aluminum nitride. , 1993, Physical review. B, Condensed matter.

[74]  Tow Chong Chong,et al.  Electronic band structures and effective-mass parameters of wurtzite GaN and InN , 1998 .

[75]  Jenkins,et al.  Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN. , 1989, Physical review. B, Condensed matter.

[76]  F. Fang,et al.  Two-dimensional electron gas and persistent photoconductivity in AlxGa1-xN/GaN heterostructures , 1998 .

[77]  S. Bloom Band structures of GaN and AIN , 1971 .

[78]  Nelson,et al.  Consistent structural properties for AlN, GaN, and InN. , 1995, Physical review. B, Condensed matter.

[79]  Kwiseon Kim,et al.  Effective masses and valence-band splittings in GaN and AlN , 1997 .

[80]  R. Dimitrov,et al.  Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures , 2000 .

[81]  M. Tischler,et al.  Transport coefficients of AlGaN/GaN heterostructures , 1998 .

[82]  Philip E. Gill,et al.  Practical optimization , 1981 .

[83]  T. Moustakas,et al.  Thermal expansion of gallium nitride , 1994 .

[84]  Tao Yang,et al.  Electronic Structures of Wurtzite GaN, InN and Their Alloy Ga1-xInxN Calculated by the Tight-Binding Method , 1995 .

[85]  K. Kunc,et al.  Structure and static properties of indium nitride at low and moderate pressures , 1993 .

[86]  Suzuki,et al.  First-principles calculations of effective-mass parameters of AlN and GaN. , 1995, Physical review. B, Condensed matter.

[87]  M. Shur,et al.  Effective g(*) factor of two-dimensional electrons in GaN/AlGaN heterojunctions , 1999 .

[88]  Scheffler,et al.  Electronic and structural properties of GaN by the full-potential linear muffin-tin orbitals method: The role of the d electrons. , 1993, Physical review. B, Condensed matter.

[89]  Su-Huai Wei,et al.  Valence band splittings and band offsets of AlN, GaN, and InN , 1996 .

[90]  Shirley,et al.  Quasiparticle band structure of AlN and GaN. , 1993, Physical review. B, Condensed matter.

[91]  M. Shur,et al.  Cyclotron resonance and quantum Hall effect studies of the two-dimensional electron gas confined at the GaN/AlGaN interface , 1997 .

[92]  Alex Zunger,et al.  Local-density-derived semiempirical nonlocal pseudopotentials for InP with applications to large quantum dots , 1997 .

[93]  K. Reimann,et al.  Exciton binding energies and band gaps in GaN bulk crystals , 1998 .

[94]  Devreese,et al.  High-pressure properties of wurtzite- and rocksalt-type aluminum nitride. , 1991, Physical review. B, Condensed matter.

[95]  Hybertsen,et al.  Local empirical pseudopotential approach to the optical properties of Si/Ge superlattices. , 1989, Physical review. B, Condensed matter.

[96]  K. Brennan,et al.  Monte Carlo calculation of electron transport properties of bulk AlN , 1998 .

[97]  A. Chen,et al.  Shallow Donor Levels and the Conduction Band Edge Structures in Polytypes of SiC , 1997 .

[98]  Wang,et al.  Local-density-derived semiempirical pseudopotentials. , 1995, Physical review. B, Condensed matter.