Label-free natural deduction systems for intuitionistic and classical modal logics

In this paper we study natural deduction for the intuitionistic and classical (normal) modal logics obtained from the combinations of the axioms T, B, 4 and 5. In this context we introduce a new multi-contextual structure, called T-sequent, that allows to design simple labelfree natural deduction systems for these logics. After proving that they are sound and complete we show that they satisfy the normalization property and consequently the subformula property in the intuitionistic case.

[1]  A. Avron The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .

[2]  Lutz Straßburger,et al.  Modular Sequent Systems for Modal Logic , 2009, TABLEAUX.

[3]  R. A. Bull,et al.  Basic Modal Logic , 1984 .

[4]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[5]  Yakoub Salhi,et al.  Calculi for an Intuitionistic Hybrid Modal Logic , 2008 .

[6]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[7]  Frank Pfenning,et al.  A symmetric modal lambda calculus for distributed computing , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[8]  Gordon Plotkin,et al.  A framework for intuitionistic modal logics: extended abstract , 1986 .

[9]  Lev Gordeev,et al.  Basic proof theory , 1998 .

[10]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[11]  Sara Negri,et al.  Proof Analysis in Modal Logic , 2005, J. Philos. Log..

[12]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[13]  Gisèle Fischer-Servi The finite model property for ${\bf MIPQ}$ and some consequences. , 1978 .

[14]  Maria da Paz N. Medeiros A new S4 classical modal logic in natural deduction , 2006, J. Symb. Log..

[15]  David F. Siemens Fitch-style rules for many modal logics , 1977, Notre Dame J. Formal Log..

[16]  Valeria C V de Paiva,et al.  Extended Curry-Howard Correspondence for a Basic Constructive Modal Logic , 2001 .

[17]  Gordon D. Plotkin,et al.  A Framework for Intuitionistic Modal Logics , 1988, TARK.

[18]  Kai Brünnler,et al.  Deep sequent systems for modal logic , 2009, Arch. Math. Log..

[19]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[20]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[21]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[22]  R. A. Bull A modal extension of intuitionist logic , 1965, Notre Dame J. Formal Log..

[23]  Frank Pfenning,et al.  A modal analysis of staged computation , 1996, POPL '96.

[24]  Francesca Poggiolesi,et al.  The Method of Tree-Hypersequents for Modal Propositional Logic , 2009, Towards Mathematical Philosophy.

[25]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[26]  Michael Mendler,et al.  An Intuitionistic Modal Logic with Applications to the Formal Verification of Hardware , 1994, CSL.

[27]  Frank Pfenning,et al.  A symmetric modal lambda calculus for distributed computing , 2004, LICS 2004.