Label-free natural deduction systems for intuitionistic and classical modal logics
暂无分享,去创建一个
[1] A. Avron. The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .
[2] Lutz Straßburger,et al. Modular Sequent Systems for Modal Logic , 2009, TABLEAUX.
[3] R. A. Bull,et al. Basic Modal Logic , 1984 .
[4] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[5] Yakoub Salhi,et al. Calculi for an Intuitionistic Hybrid Modal Logic , 2008 .
[6] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[7] Frank Pfenning,et al. A symmetric modal lambda calculus for distributed computing , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[8] Gordon Plotkin,et al. A framework for intuitionistic modal logics: extended abstract , 1986 .
[9] Lev Gordeev,et al. Basic proof theory , 1998 .
[10] Richard Spencer-Smith,et al. Modal Logic , 2007 .
[11] Sara Negri,et al. Proof Analysis in Modal Logic , 2005, J. Philos. Log..
[12] Alex K. Simpson,et al. The proof theory and semantics of intuitionistic modal logic , 1994 .
[13] Gisèle Fischer-Servi. The finite model property for ${\bf MIPQ}$ and some consequences. , 1978 .
[14] Maria da Paz N. Medeiros. A new S4 classical modal logic in natural deduction , 2006, J. Symb. Log..
[15] David F. Siemens. Fitch-style rules for many modal logics , 1977, Notre Dame J. Formal Log..
[16] Valeria C V de Paiva,et al. Extended Curry-Howard Correspondence for a Basic Constructive Modal Logic , 2001 .
[17] Gordon D. Plotkin,et al. A Framework for Intuitionistic Modal Logics , 1988, TARK.
[18] Kai Brünnler,et al. Deep sequent systems for modal logic , 2009, Arch. Math. Log..
[19] M. Fitting. Proof Methods for Modal and Intuitionistic Logics , 1983 .
[20] Dov M. Gabbay,et al. Handbook of Philosophical Logic , 2002 .
[21] Valeria de Paiva,et al. On an Intuitionistic Modal Logic , 2000, Stud Logica.
[22] R. A. Bull. A modal extension of intuitionist logic , 1965, Notre Dame J. Formal Log..
[23] Frank Pfenning,et al. A modal analysis of staged computation , 1996, POPL '96.
[24] Francesca Poggiolesi,et al. The Method of Tree-Hypersequents for Modal Propositional Logic , 2009, Towards Mathematical Philosophy.
[25] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[26] Michael Mendler,et al. An Intuitionistic Modal Logic with Applications to the Formal Verification of Hardware , 1994, CSL.
[27] Frank Pfenning,et al. A symmetric modal lambda calculus for distributed computing , 2004, LICS 2004.