Evaluating the simulated radiative forcings, aerosol properties and stratospheric warmings from the 1963 Agung, 1982 El Chichón and 1991 Mt Pinatubo volcanic aerosol clouds

Abstract. Accurate quantification of the effects of volcanic eruptions on climate is a key requirement for better attribution of anthropogenic climate change. Here we use the UM-UKCA composition-climate model to simulate the atmospheric evolution of the volcanic aerosol clouds from the three largest eruptions of the 20th century: 1963 Agung, 1982 El Chichón and 1991 Pinatubo. The model has interactive stratospheric chemistry and aerosol microphysics, with coupled aerosol–radiation interactions for realistic composition-dynamics feedbacks. Our simulations align with the design of the Interactive Stratospheric Aerosol Model Intercomparison (ISA-MIP) Historical Eruption SO2 Emissions Assessment. For each eruption, we perform 3-member ensemble model experiments with upper, mid-point and lower estimates for SO2 emission, each initialised to a meteorological state to match the observed phase of the quasi-biennial oscillation (QBO) at the times of the eruptions. We assess how each eruption's emitted SO2 evolves into a tropical reservoir of volcanic aerosol and analyse the subsequent dispersion to mid-latitudes. We compare the simulations to the three volcanic forcing datasets used in historical integrations for the two most recent Coupled Model Intercomparison Project (CMIP) assessments: the Global Space-based Stratospheric Aerosol Climatology (GloSSAC) for CMIP6, and the Sato et al. (1993) and Ammann et al. (2003) datasets used in CMIP5. We also assess the vertical extent of the volcanic aerosol clouds by comparing simulated extinction to Stratospheric Aerosol and Gas Experiment II (SAGE-II) v7.0 satellite aerosol data (1985–1995) for Pinatubo and El Chichón, and to 1964–65 northern hemisphere ground-based lidar measurements for Agung. As an independent test for the simulated volcanic forcing after Pinatubo, we also compare to the shortwave (SW) and longwave (LW) Top-of-the-Atmosphere flux anomalies measured by the Earth Radiation Budget Experiment (ERBE) satellite instrument. For the Pinatubo simulations, an injection of 10 to 14 Tg SO2 gives the best match to the High Resolution Infrared Sounder (HIRS) satellite-derived global stratospheric sulphur burden, with good agreement also to SAGE-II mid-visible and near-infrared extinction measurements. This 10–14 Tg range of emission also generates a heating of the tropical stratosphere that is comparable with the temperature anomaly seen in the ERA-Interim reanalyses. For El Chichón the simulations with 5 Tg and 7 Tg SO2 emission give best agreement with the observations. However, these runs predict a much deeper volcanic cloud than present in the CMIP6 data, with much higher aerosol extinction than the GloSSAC data up to October 1984, but better agreement during the later SAGE-II period. For 1963 Agung, the 9 Tg simulation compares best to the forcing datasets with the model capturing the lidar-observed signature of peak extinction descending from 20 km in 1964 to 16 km in 1965. Overall, our results indicate that the downward adjustment to previous SO2 emission estimates for Pinatubo as suggested by several interactive modelling studies is also needed for the Agung and El Chichón aerosol clouds. This strengthens the hypothesis that interactive stratospheric aerosol models may be missing an important removal or redistribution process (e.g. effects of co-emitted ash) which changes how the tropical reservoir of volcanic aerosol evolves in the initial months after an eruption. Our analysis identifies potentially important inhomogeneities in the CMIP6 dataset for all three periods that are hard to reconcile with variations predicted by the interactive stratospheric aerosol model. We also highlight large differences between the CMIP5 and CMIP6 volcanic aerosol datasets for the Agung and El Chichón periods. Future research should aim to reduce this uncertainty by reconciling the datasets with additional stratospheric aerosol observations.

[1]  G. Mann,et al.  Recovered measurements of the 1960s stratospheric aerosol layer for new constraints for volcanic forcing in the years after 1963 Agung , 2020 .

[2]  G. Mann,et al.  Ash-sulphuric interactions: Simulating major volcanic aerosol clouds as global dust veils , 2019 .

[3]  D. Sexton,et al.  Ensembles of Global Climate Model Variants Designed for the Quantification and Constraint of Uncertainty in Aerosols and Their Radiative Forcing , 2019, Journal of Advances in Modeling Earth Systems.

[4]  C. Timmreck,et al.  Revisiting the Agung 1963 volcanic forcing – impact of one or two eruptions , 2019, Atmospheric Chemistry and Physics.

[5]  James S. A. Brooke,et al.  The prevalence of meteoric-sulphuric particles within the stratospheric aerosol layer , 2019 .

[6]  M. Toohey,et al.  The Circulation Response to Volcanic Eruptions: The Key Roles of Stratospheric Warming and Eddy Interactions , 2019, Journal of Climate.

[7]  G. Mann,et al.  Exploring How Eruption Source Parameters Affect Volcanic Radiative Forcing Using Statistical Emulation , 2019, Journal of Geophysical Research: Atmospheres.

[8]  J. Sheng,et al.  Stratospheric aerosol evolution after Pinatubo simulated with a coupled size-resolved aerosol–chemistry–climate model, SOCOL-AERv1.0 , 2018, Geoscientific Model Development.

[9]  O. Boucher,et al.  Causes of irregularities in trends of global mean surface temperature since the late 19th century , 2018, Science Advances.

[10]  J. M. English,et al.  The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design , 2018, Geoscientific Model Development.

[11]  James S. A. Brooke,et al.  Meteoric Smoke Deposition in the Polar Regions: A Comparison of Measurements With Global Atmospheric Models , 2017 .

[12]  James S. A. Brooke,et al.  Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora , 2017 .

[13]  J. Marrero,et al.  Standardizing the determination of the molecular backscatter coefficient profiles for LALINET lidar stations using ERA- Interim Reanalysis , 2017 .

[14]  Andrea Stenke,et al.  Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI) , 2017 .

[15]  G. Pitari,et al.  Impact of Stratospheric Volcanic Aerosols on Age-of-Air and Transport of Long-Lived Species , 2016 .

[16]  K. Rosenlof,et al.  Radiative forcing from anthropogenic sulfur and organic emissions reaching the stratosphere , 2016 .

[17]  C. Timmreck,et al.  Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty , 2016 .

[18]  Fiona Tummon,et al.  The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) : experimental design and forcing input data for CMIP6 , 2016 .

[19]  S. Bauer,et al.  Role of Atmospheric Chemistry in the Climate Impacts of Stratospheric Volcanic Injections , 2016 .

[20]  V. Aquila,et al.  Sensitivity of volcanic aerosol dispersion to meteorological conditions: A Pinatubo case study , 2016 .

[21]  G. Pitari,et al.  Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time , 2016 .

[22]  C. Timmreck,et al.  Stratospheric aerosol—Observations, processes, and impact on climate , 2016 .

[23]  A. Schmidt,et al.  Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM) , 2016 .

[24]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[25]  C. Timmreck,et al.  Evolving particle size is the key to improved volcanic forcings , 2015 .

[26]  J. Sheng,et al.  A perturbed parameter model ensemble to investigate Mt. Pinatubo's 1991 initial sulfur mass emission , 2015 .

[27]  G. Mann,et al.  Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3‐D model study , 2015, Geophysical research letters.

[28]  J. Marotzke,et al.  Forcing, feedback and internal variability in global temperature trends , 2015, Nature.

[29]  J. Sheng,et al.  Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol‐chemistry‐climate model predictions and validation , 2015 .

[30]  G. Mann,et al.  Aerosol microphysics simulations of the Mt.~Pinatubo eruption with the UM-UKCA composition-climate model , 2014 .

[31]  N. Butchart The Brewer‐Dobson circulation , 2014 .

[32]  K. Froyd,et al.  Observations of the chemical composition of stratospheric aerosol particles , 2014 .

[33]  Carl A. Mears,et al.  Volcanic contribution to decadal changes in tropospheric temperature , 2014 .

[34]  Robert Damadeo,et al.  SAGE version 7.0 algorithm: application to SAGE II , 2013 .

[35]  J. Sheng,et al.  Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions , 2013 .

[36]  R. Stothers,et al.  Major Optical Depth Perturbations to the Stratosphere from Volcanic Eruptions: Stellar-Extinction Period, 1961-1978 , 2013 .

[37]  T. Canty,et al.  An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling , 2013 .

[38]  Stefan Brönnimann,et al.  Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present , 2013 .

[39]  L. Oman,et al.  The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo , 2012 .

[40]  A. Robock,et al.  Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions , 2012 .

[41]  S. Dhomse,et al.  Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses , 2011 .

[42]  J. Burrows,et al.  The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales , 2011 .

[43]  J. Staehelin,et al.  Missing Stratospheric Ozone Decrease at Southern Hemisphere Middle Latitudes after Mt. Pinatubo: A Dynamical Perspective , 2011 .

[44]  Francis W. Zwiers,et al.  Use of models in detection and attribution of climate change , 2011 .

[45]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[46]  Martyn P. Chipperfield,et al.  Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model , 2010 .

[47]  C. Timmreck,et al.  The global middle-atmosphere aerosol model MAECHAM5-SAM2: comparison with satellite and in-situ observations , 2010 .

[48]  Martyn P. Chipperfield,et al.  Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models , 2010 .

[49]  D. Marsh,et al.  ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere , 2009 .

[50]  John R. Lanzante,et al.  Effect of Volcanic Eruptions on the Vertical Temperature Profile in Radiosonde Data and Climate Models , 2009 .

[51]  William J. Collins,et al.  Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere , 2008 .

[52]  C. Timmreck,et al.  Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 – Part 2: Sensitivity to the phase of the QBO and ENSO , 2008 .

[53]  Daniel M. Murphy,et al.  Carbonaceous material in aerosol particles in the lower stratosphere and tropopause region , 2007 .

[54]  S. Dhomse,et al.  The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor , 2006 .

[55]  S. Dhomse,et al.  On the possible causes of recent increases in northern hemispheric total ozone from a statistical analysis of satellite data from 1979 to 2003 , 2006 .

[56]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[57]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[58]  Veronika Eyring,et al.  A Strategy for Process-Oriented Validation of Coupled Chemistry- Climate Models , 2005 .

[59]  W. Rose,et al.  Particles in the great Pinatubo volcanic cloud of June 1991: The role of ice , 2004 .

[60]  W. Rose,et al.  Re‐evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors , 2004 .

[61]  Manoj Joshi,et al.  A GCM Study of Volcanic Eruptions as a Cause of Increased Stratospheric Water Vapor , 2003 .

[62]  A. Robock,et al.  Spatial and temporal variability of the stratospheric aerosol cloud produced by the 1991 Mount Pinatubo eruption , 2003 .

[63]  A. Adriani,et al.  Large nitric acid particles at the top of an Arctic stratospheric cloud , 2003 .

[64]  P. B. Russell,et al.  A stratospheric aerosol climatology from SAGE II and CLAES measurements: 1. Methodology , 2003 .

[65]  P. Hamill,et al.  A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparisons, 1984–1999 , 2003 .

[66]  Charles S. Zender,et al.  A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate , 2003 .

[67]  H. Jäger,et al.  Correction to “Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements” , 2003 .

[68]  H. Lee,et al.  Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades , 2003 .

[69]  H. Jäger,et al.  Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements , 2002 .

[70]  A. Robock,et al.  Lidar validation of SAGE II aerosol measurements after the 1991 Mount Pinatubo eruption , 2002 .

[71]  Alan Robock,et al.  Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. , 2002, Science.

[72]  Bruce A. Wielicki,et al.  Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget , 2002, Science.

[73]  B. Santer,et al.  Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends , 2001 .

[74]  A. Robock Volcanic eruptions and climate , 2000 .

[75]  Stanley C. Solomon,et al.  Stratospheric ozone depletion: A review of concepts and history , 1999 .

[76]  Larry W. Thomason,et al.  Radiative forcing from the 1991 Mount Pinatubo volcanic eruption , 1998 .

[77]  D. Hofmann,et al.  Lidar measurements of stratospheric aerosol over Mauna Loa Observatory , 1997 .

[78]  J. Angell Stratospheric warming due to Agung, El Chichón, and Pinatubo taking into account the quasi‐biennial oscillation , 1997 .

[79]  L. Thomason,et al.  A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994 , 1997 .

[80]  J. Angell Estimated impact of Agung, El Chichon and Pinatubo volcanic eruptions on global and regional total ozone after adjustment for the QBO , 1997 .

[81]  L. Thomason,et al.  A comparison of the stratospheric aerosol background periods , 1997 .

[82]  S. Massie,et al.  Global evolution of the Mt. Pinatubo volcanic aerosols observed by the infrared limb‐sounding instruments CLAES and ISAMS on the Upper Atmosphere Research Satellite , 1997 .

[83]  Larry W. Thomason,et al.  Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses , 1996 .

[84]  J. Antuña Lidar measurements of stratospheric aerosols from Mount Pinatubo at Camaguey, Cuba , 1996 .

[85]  R. Stothers Major optical depth perturbations to the stratosphere from volcanic eruptions: Pyrheliometric period, 1881–1960 , 1996 .

[86]  C. Long,et al.  Use of volcanic aerosols to study the tropical stratospheric reservoir , 1996 .

[87]  R. A. Plumb A “tropical pipe” model of stratospheric transport , 1996 .

[88]  J. Holton,et al.  Stratosphere‐troposphere exchange , 1995 .

[89]  M. McCormick,et al.  Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.

[90]  R. McKenzie,et al.  Decay of Mount Pinatubo aerosol at midlatitudes in the northern and southern hemispheres , 1994 .

[91]  Anthony J. Baran,et al.  New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption , 1994 .

[92]  Craig S. Long,et al.  using the NOAA/AVHRR to study stratospheric aerosol optical thicknesses following the Mt. Pinatubo Eruption , 1994 .

[93]  O. Toon,et al.  Radiatively forced dispersion of the Mt. Pinatubo volcanic cloud and induced temperature perturbations in the stratosphere during the first few months following the eruption , 1994 .

[94]  J. Hansen,et al.  Stratospheric aerosol optical depths, 1850–1990 , 1993 .

[95]  M. Pitts,et al.  The impact of the eruptions of Mount Pinatubo and CERRO Hudson on Antarctic aerosol levels during the 1991 austral spring , 1993 .

[96]  M. Patrick McCormick,et al.  The poleward dispersal of Mount Pinatubo volcanic aerosol , 1993 .

[97]  Anthony J. Baran,et al.  Satellite detection of volcanic sulphuric acid aerosol , 1993 .

[98]  L. W. Sterritt,et al.  The cryogenic limb array etalon spectrometer (CLAES) on UARS: Experiment description and performance , 1993 .

[99]  A. Lambert,et al.  Infrared absorption by volcanic stratospheric aerosols observed by ISAMS , 1993 .

[100]  Alyn Lambert,et al.  Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS , 1993 .

[101]  J. Pyle,et al.  Role of sulphur photochemistry in tropical ozone changes after the eruption of Mount Pinatubo , 1993, Nature.

[102]  L. Thomason Observations of a new SAGE II aerosol extinction mode following the eruption of Mt. Pinatubo , 1992 .

[103]  M. Prather,et al.  Buffering of stratospheric circulation by changing amounts of tropical ozone a Pinatubo Case Study , 1992 .

[104]  J. Hansen,et al.  Climate forcing by stratospheric aerosols , 1992 .

[105]  S. Young,et al.  Southern Hemisphere Lidar Measurements of the Aerosol Clouds from Mt. Pinatubo and Mt. Hudson , 1992 .

[106]  M. Prather Catastrophic loss of stratospheric ozone in dense volcanic clouds , 1992 .

[107]  Stuart A. Young,et al.  Identification of the Mount Hudson volcanic cloud over SE Australia , 1992 .

[108]  M. T. Osborn,et al.  Airborne lidar observations of the Pinatubo volcanic plume , 1992 .

[109]  S. Solomon,et al.  Ozone destruction through heterogeneous chemistry following the eruption of El Chichón , 1989 .

[110]  D. Hofmann,et al.  Sulfuric Acid Droplet Formation and Growth in the Stratosphere After the 1982 Eruption of El Chich�n , 1983, Science.

[111]  M. McCormick,et al.  Stratospheric aerosol mass and latitudinal distribution of the El Chichon eruption cloud for October 1982 , 1983 .

[112]  A. Robock,et al.  Circumglobal Transport of the El Chich�n Volcanic Dust Cloud , 1983, Science.

[113]  D. Hofmann,et al.  Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon , 1983 .

[114]  R. Turco,et al.  Stratospheric aerosols: Observation and theory , 1982 .

[115]  P. Crutzen,et al.  Heterogeneous chemical reactions in the stratosphere , 1975 .

[116]  G. Grams,et al.  Stratospheric Aerosol Particles and Their Optical Properties , 1975 .

[117]  A. Dyer The effect of volcanic eruptions on global turbidity, and an attempt to detect long‐term trends due to man , 1974 .

[118]  A. Dyer Anisotropic diffusion coefficients and the global spread of volcanic dust , 1970 .

[119]  B. Hicks,et al.  Global spread of volcanic dust from the Bali eruption of 1963 , 1968 .

[120]  J. Rosen Simultaneous dust and ozone soundings over North and central America , 1968 .

[121]  J. Rosen The vertical distribution of dust to 30 kilometers , 1964 .

[122]  G. Fiocco,et al.  Observations of the Aerosol Layer at 20 km by Optical Radar , 1964 .

[123]  Larry W. Thomason,et al.  A Global Space-based Stratospheric Aerosol Climatology (Version 2.0): 1979–2018 , 2020 .

[124]  Veronika Eyring,et al.  Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) Community Simulations in Support of Upcoming Ozone and Climate Assessments , 2013 .

[125]  A. Bodas‐Salcedo,et al.  The Met Office Unified Model Global Atmosphere 4 . 0 and JULES Global Land 4 . 0 configurations , 2014 .

[126]  J. A. Pyle,et al.  Geoscientific Model Development Evaluation of the new UKCA climate-composition model – Part 1 : The stratosphere , 2009 .

[127]  T. Shepherd,et al.  Overview of the New CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal report , 2008 .

[128]  M. P. McCormick,et al.  Sage II: An overview , 1987 .

[129]  Liu Xinwu This is How the Discussion Started , 1981 .

[130]  G. Grams Optical radar studies of stratospheric aerosols. , 1966 .