Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator.

Presented in this paper is the study of the performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator. The application of this micropump is to circulate fuel inside a miniaturized direct methanol fuel cell (DMFC) power system. A theoretical model based on the theory of plates and shells is established to estimate the deflection and the volume change of this micropump without liquid loading. Both finite-element method (FEM) and experimental method are applied to verify this model. Using this model, the optimal design parameters such as the dimensions and the mechanical properties of the micropump can be obtained. Furthermore, various system parameters that will affect the performance of the micropump system with liquid loading are identified and analyzed experimentally. It is expected that this study will provide some vital information for many micropump applications such as fuel delivery in fuel cells, ink jet printers, and biofluidics.

[1]  P. G. Harper,et al.  The piezoelectric bimorph: An experimental and theoretical study of its quasistatic response , 1978 .

[2]  X Huang,et al.  Numerical Simulation of Pulse-Width-Modulated Micropumps with Diffuser/Nozzle Elements , 2000 .

[3]  G. Stemme,et al.  A valveless diffuser/nozzle-based fluid pump , 1993 .

[4]  Peter Enoksson,et al.  A valve-less planar pump isotropically etched in silicon , 1996 .

[5]  Amos Ullmann,et al.  The piezoelectric valve-less pump - improved dynamic model , 2002 .

[6]  G. Stemme,et al.  Micromachined flat-walled valveless diffuser pumps , 1997 .

[7]  Shaochen Chen,et al.  Analytical analysis of a circular PZT actuator for valveless micropumps , 2003 .

[8]  Nam-Trung Nguyen,et al.  A fully polymeric micropump with piezoelectric actuator , 2004 .

[9]  Arthur Brunnschweiler,et al.  The dynamic micropump driven with a screen printed PZT actuator , 1998 .

[10]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[11]  Martin A. Afromowitz,et al.  DESIGN, FABRICATION AND TESTING OF FIXED-VALVE MICRO-PUMPS , 1995 .

[12]  Tao Zhang,et al.  Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices , 2005 .

[13]  Göran Stemme,et al.  A valve-less planar fluid pump with two pump chambers , 1995 .

[14]  T Gerlach,et al.  A new micropump principle of the reciprocating type using pyramidic micro flowchannels as passive valves , 1995 .

[15]  Anders Olsson Valve-less diffuser micropumps , 1998 .

[16]  Göran Stemme,et al.  A numerical design study of the valveless diffuser pump using a lumped-mass model , 1999 .

[17]  Anders Olsson,et al.  Diffuser-element design investigation for valve-less pumps , 1996 .

[18]  James S. Wilkinson,et al.  Design and theoretical evaluation of a novel microfluidic device to be used for PCR , 2003 .

[19]  Amos Ullmann The piezoelectric valve-less pump—performance enhancement analysis , 1998 .

[20]  Nam-Trung Nguyen,et al.  Miniature valveless pumps based on printed circuit board technique , 2001 .

[21]  Christopher J. Morris,et al.  Optimization of a circular piezoelectric bimorph for a micropump driver , 2000 .

[22]  H. Lintel,et al.  A piezoelectric micropump based on micromachining of silicon , 1988 .

[23]  William W. Clark,et al.  Piezoelectric energy harvesting using diaphragm structure , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[24]  Anders Olsson,et al.  Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps , 2000 .

[25]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[26]  Martin A. Afromowitz,et al.  Designing High-Performance Micro-Pumps Based on No-Moving-Parts Valves , 1997, Microelectromechanical Systems (MEMS).

[27]  Jens Anders Branebjerg,et al.  Microfluidics-a review , 1993 .

[28]  Torsten Gerlach,et al.  Working principle and performance of the dynamic micropump , 1995 .