Using species co-occurrence networks to assess the impacts of climate change

This study is part of a broader research program sponsored by the CSIC-PUC International Laboratory for Global Change (LINC-Global); MBA is also funded by EC FP6 ECOCHANGE project (036866-GOCE) and by the Spanish Ministry of Science and Innovation (CGL2008-01198-E/BOS); CR thanks the Danish National Research Foundation for its support of the Center for Macroecology, Evolution and Climate. PAM acknowledges support from FONDECYT-FONDAP 1501-0001, ICM P05-002 and CONICYT PFB-23.

[1]  Jordi Bascompte,et al.  Plant-Animal Mutualistic Networks: The Architecture of Biodiversity , 2007 .

[2]  V. Eguíluz,et al.  Network analysis identifies weak and strong links in a metapopulation system , 2008, Proceedings of the National Academy of Sciences.

[3]  Daniel Simberloff,et al.  The Assembly of Species Communities: Chance or Competition? , 1979 .

[4]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[5]  Miguel B. Araújo,et al.  Do community‐level models describe community variation effectively? , 2010 .

[6]  Mark New,et al.  Ensemble forecasting of species distributions. , 2007, Trends in ecology & evolution.

[7]  J. Thompson The Geographic Mosaic of Coevolution , 2005 .

[8]  Omri Allouche,et al.  Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .

[9]  M. Luoto,et al.  Biotic interactions improve prediction of boreal bird distributions at macro‐scales , 2007 .

[10]  Karline Soetaert,et al.  Are network indices robust indicators of food web functioning? A Monte Carlo approach , 2009 .

[11]  Mathieu Marmion,et al.  Evaluation of consensus methods in predictive species distribution modelling , 2009 .

[12]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .

[13]  M. Araújo,et al.  Individualistic vs community modelling of species distributions under climate change. , 2009 .

[14]  J. Lawton,et al.  Making mistakes when predicting shifts in species range in response to global warming , 1998, Nature.

[15]  L. Nilsson,et al.  The evolution of flowers with deep corolla tubes , 1988, Nature.

[16]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[17]  M. Araújo,et al.  Reducing uncertainty in projections of extinction risk from climate change , 2005 .

[18]  N. Gotelli Null model analysis of species co-occurrence patterns , 2000 .

[19]  W. Hagemeijer,et al.  The EBCC Atlas of European Breeding Birds , 1997 .

[20]  M. Araújo,et al.  Biotic and abiotic variables show little redundancy in explaining tree species distributions , 2010 .

[21]  B. Ebenman,et al.  Using community viability analysis to identify fragile systems and keystone species. , 2005, Trends in ecology & evolution.

[22]  R. Kadmon,et al.  Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance , 2003 .

[23]  K. Burns,et al.  Network properties of arboreal plants: Are epiphytes, mistletoes and lianas structured similarly? , 2009 .

[24]  J. Stewart,et al.  The evolutionary consequence of the individualistic response to climate change , 2009, Journal of evolutionary biology.

[25]  P. Jones,et al.  REPRESENTING TWENTIETH CENTURY SPACE-TIME CLIMATE VARIABILITY. , 1998 .

[26]  T. D. Mitchell,et al.  Ecosystem Service Supply and Vulnerability to Global Change in Europe , 2005, Science.

[27]  Bob W. Kooi,et al.  Adapt or disperse: understanding species persistence in a changing world , 2010 .

[28]  Gary R. Graves,et al.  Macroecological signals of species interactions in the Danish avifauna , 2010, Proceedings of the National Academy of Sciences.

[29]  M. Araújo,et al.  The importance of biotic interactions for modelling species distributions under climate change , 2007 .

[30]  J. Lawton Are there general laws in ecology , 1999 .

[31]  Miguel B. Araújo,et al.  Geographical gradients of species richness: a test of the water‐energy conjecture of Hawkins et al. (2003) using European data for five taxa , 2006 .

[32]  David R. B. Stockwell,et al.  The GARP modelling system: problems and solutions to automated spatial prediction , 1999, Int. J. Geogr. Inf. Sci..

[33]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[34]  J. Bascompte,et al.  Global change and species interactions in terrestrial ecosystems. , 2008, Ecology letters.

[35]  J. Holman Pleistocene Amphibians and Reptiles in Britain and Europe , 1998 .

[36]  John W. Williams,et al.  DISSIMILARITY ANALYSES OF LATE-QUATERNARY VEGETATION AND CLIMATE IN EASTERN NORTH AMERICA , 2001 .

[37]  Robert K. Colwell Competition and Coexistence in a Simple Tropical Community , 1973, The American Naturalist.

[38]  Jan Zima,et al.  The Atlas of European Mammals , 1999 .

[39]  David A. Bohan,et al.  Spatial co-occurrence networks predict the feeding histories of polyphagous arthropod predators at field scales , 2010 .

[40]  Neo D. Martinez,et al.  Network structure and biodiversity loss in food webs: robustness increases with connectance , 2002, Ecology Letters.

[41]  Wilfried Thuiller,et al.  Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models , 2008, Biology Letters.

[42]  Miroslav Dudík,et al.  Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation , 2008 .

[43]  Guido Caldarelli,et al.  Universal scaling relations in food webs , 2003, Nature.

[44]  A. Simakova The vegetation of the Russian Plain during the second part of the Late Pleistocene (33-18 ka) , 2006 .

[45]  Roger Guimerà,et al.  Robust patterns in food web structure. , 2001, Physical review letters.

[46]  R. Graham,et al.  Effects of global climate change on the patterns of terrestrial biological communities. , 1990, Trends in ecology & evolution.

[47]  P. Jones,et al.  Representing Twentieth-Century Space-Time Climate Variability. Part II: Development of 1901-96 Monthly Grids of Terrestrial Surface Climate , 2000 .

[48]  Amedeo Caflisch,et al.  The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. , 2010, Ecology letters.

[49]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Halliday,et al.  Atlas of Amphibians and Reptiles in Europe , 1997 .

[51]  W. Patterson,et al.  Abrupt recent shift in δ13C and δ15N values in Adélie penguin eggshell in Antarctica , 2007, Proceedings of the National Academy of Sciences.

[52]  Carlos J. Melián,et al.  The nested assembly of plant–animal mutualistic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[54]  Anthony R. Ives,et al.  Species Response to Environmental Change: Impacts of Food Web Interactions and Evolution , 2009, Science.

[55]  A. Gimona,et al.  Opening the climate envelope reveals no macroscale associations with climate in European birds , 2008, Proceedings of the National Academy of Sciences.

[56]  R. J. Pool,et al.  Plant Succession. An Analysis of the Development of Vegetation , 1917 .

[57]  Yacov Salomon,et al.  Effects of asymmetric dispersal on the coexistence of competing species. , 2010, Ecology letters.

[58]  S. Johnson,et al.  LONG‐TONGUED FLY POLLINATION AND EVOLUTION OF FLORAL SPUR LENGTH IN THE DISA DRACONIS COMPLEX (ORCHIDACEAE) , 1997, Evolution; international journal of organic evolution.

[59]  P. Asprelli,et al.  The Geographic Mosaic of Coevolution , 2006 .

[60]  H. Gregory McDonald,et al.  Spatial Response of Mammals to Late Quaternary Environmental Fluctuations , 1996, Science.

[61]  Wilfried Thuiller,et al.  Reopening the climate envelope reveals macroscale associations with climate in European birds , 2009, Proceedings of the National Academy of Sciences.

[62]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[63]  T. Dawson,et al.  Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? , 2003 .

[64]  C. Adami,et al.  Critical and near-critical branching processes. , 1999, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Richard Field,et al.  ENERGY, WATER, AND BROAD‐SCALE GEOGRAPHIC PATTERNS OF SPECIES RICHNESS , 2003 .

[66]  Eduardo Domínguez,et al.  Sympatry inference and network analysis in biogeography. , 2008, Systematic biology.

[67]  Neo D. Martinez,et al.  Food-web structure and network theory: The role of connectance and size , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M. Araújo,et al.  Validation of species–climate impact models under climate change , 2005 .

[69]  Miguel B. Araújo,et al.  Quaternary climate changes explain diversity among reptiles and amphibians , 2008 .

[70]  M. Power,et al.  Species Interactions Reverse Grassland Responses to Changing Climate , 2007, Science.

[71]  T. Rangel,et al.  Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change , 2009 .

[72]  Jordi Bascompte,et al.  Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance , 2006, Science.

[73]  Anna Eklöf,et al.  Species loss and secondary extinctions in simple and complex model communities. , 2006, The Journal of animal ecology.

[74]  Damien A. Fordham,et al.  Dynamics of range margins for metapopulations under climate change , 2009, Proceedings of the Royal Society B: Biological Sciences.