Adaptive constraint reduction for convex quadratic programming

[1]  Dianne P. O'Leary,et al.  A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm , 2012, Comput. Optim. Appl..

[2]  Richard W. Cottle,et al.  Linear and Nonlinear Optimization , 2008 .

[3]  Beyond—bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[4]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[5]  Michael C. Ferris,et al.  Interior-Point Methods for Massive Support Vector Machines , 2002, SIAM J. Optim..

[6]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[7]  Ingvar Claesson,et al.  A semi-infinite quadratic programming algorithm with applications to array pattern synthesis , 2001 .

[8]  Dianne P. O'Leary,et al.  Adaptive use of iterative methods in predictor–corrector interior point methods for linear programming , 2000, Numerical Algorithms.

[9]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[10]  Jie Sun,et al.  An Analytic Center Based Column Generation Algorithm for Convex Quadratic Feasibility Problems , 1998, SIAM J. Optim..

[11]  G. A. Watson,et al.  Choice of norms for data fitting and function approximation , 1998, Acta Numerica.

[12]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[13]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[14]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[15]  J. H. Wilkinson,et al.  Reliable Numerical Computation. , 1992 .

[16]  Yinyu Ye,et al.  A Potential Reduction Algorithm Allowing Column Generation , 1992, SIAM J. Optim..

[17]  Yinyu Ye,et al.  An O(n3L) potential reduction algorithm for linear programming , 1991, Math. Program..

[18]  Kaoru Tone,et al.  An active-set strategy in an interior point method for linear programming , 1991, Math. Program..

[19]  G. Dantzig,et al.  A Build-Up Interior Method for Linear Programming: Affine Scaling Form , 1990 .

[20]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[21]  Milton stood,et al.  The University of Maryland , 1883, The American journal of dental science.

[22]  Dianne P. O'Leary,et al.  Adaptive constraint reduction for training support vector machines. , 2008 .

[23]  Jin Hyuk Jung,et al.  Adaptive Constraint Reduction for Convex Quadratic Programming and Training Support Vector Machines , 2008 .

[24]  A. Tits,et al.  Newton-KKT interior-point methods for indefinite quadratic programming , 2007, Comput. Optim. Appl..

[25]  William P. Woessner,et al.  Constraint Reduction for Linear Programs with Many Inequality Constraints , 2006, SIAM J. Optim..

[26]  Piercar Nicola,et al.  Linear Programming and Extensions , 2000 .

[27]  Yin Zhang,et al.  Solving large-scale linear programs by interior-point methods under the Matlab ∗ Environment † , 1998 .

[28]  Jian L. Zhou,et al.  A Simple, Quadratically Convergent Interior Point Algorithm for Linear Programming and Convex Quadratic Programming , 1994 .

[29]  Tamás Terlaky,et al.  Adding and Deleting Constraints in the Logarithmic Barrier Method for LP , 1994 .

[30]  D. Hearn,et al.  Large scale optimization : state of the art , 1994 .

[31]  Dick den Hertog,et al.  A build-up variant of the path-following method for LP , 1991 .

[32]  Yinyu Ye,et al.  A “build-down” scheme for linear programming , 1990, Math. Program..

[33]  N. Higham Analysis of the Cholesky Decomposition of a Semi-definite Matrix , 1990 .

[34]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[35]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[36]  A. Tits,et al.  Submitted to COAP on 27 Sep 2004 Newton-KKT Interior-Point Methods for Indefinite Quadratic Programming ∗ , 2022 .