Algorithm comparison for schedule optimization in MR fingerprinting.

In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules.

[1]  M. F. Cardoso,et al.  A simulated annealing approach to the solution of minlp problems , 1997 .

[2]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[3]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[4]  J. Duerk,et al.  MR fingerprinting using the quick echo splitting NMR imaging technique , 2017, Magnetic resonance in medicine.

[5]  Kawin Setsompop,et al.  Simultaneous multislice magnetic resonance fingerprinting (SMS‐MRF) with direct‐spiral slice‐GRAPPA (ds‐SG) reconstruction , 2017, Magnetic resonance in medicine.

[6]  Thomas Witzel,et al.  Low-Cost High-Performance MRI , 2015, Scientific Reports.

[7]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[8]  Bo Zhao,et al.  Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting , 2016, IEEE Transactions on Medical Imaging.

[9]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[10]  M. H. Wright The interior-point revolution in optimization: History, recent developments, and lasting consequences , 2004 .

[11]  Yong Chen,et al.  Preclinical MR fingerprinting (MRF) at 7 T: effective quantitative imaging for rodent disease models , 2015, NMR in biomedicine.

[12]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Tibor Csendes,et al.  On the selection of subdivision directions in interval branch-and-bound methods for global optimization , 1995, J. Glob. Optim..

[15]  Tao Wang,et al.  Simulated Annealing with Asymptotic Convergence for Nonlinear Constrained Global Optimization , 1999, CP.

[16]  Vikas Gulani,et al.  MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. , 2015, Magnetic resonance in medicine.

[17]  Yong Chen,et al.  Multiscale reconstruction for MR fingerprinting , 2016, Magnetic resonance in medicine.

[18]  J. Duerk,et al.  Magnetic Resonance Fingerprinting , 2013, Nature.

[19]  Ronald L. Iman Latin Hypercube Sampling , 2006 .

[20]  Deniz Yuret,et al.  Dynamic Hill Climbing: Overcoming the limitations of optimization techniques , 1993 .

[21]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[22]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[23]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[24]  C. Hwang Simulated annealing: Theory and applications , 1988, Acta Applicandae Mathematicae - An International Survey Journal on Applying Mathematics and Mathematical Applications.

[25]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[26]  Ronald L. Iman Latin Hypercube Sampling , 2008 .

[27]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[28]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[29]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[30]  T. Peters,et al.  High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2 , 2005, Magnetic resonance in medicine.

[31]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[32]  Kawin Setsompop,et al.  Accelerating magnetic resonance fingerprinting (MRF) using t‐blipped simultaneous multislice (SMS) acquisition , 2016, Magnetic resonance in medicine.

[33]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[34]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[35]  James L. Rosenberger,et al.  A Fully Bayesian Approach to the Efficient Global Optimization Algorithm , 2012 .

[36]  M. Griswold,et al.  Inversion recovery TrueFISP: Quantification of T1, T2, and spin density , 2004, Magnetic resonance in medicine.

[37]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[38]  D. Finkel,et al.  Convergence analysis of the direct algorithm , 2004 .

[39]  Matthias Weigel,et al.  Extended phase graphs: Dephasing, RF pulses, and echoes ‐ pure and simple , 2015, Journal of magnetic resonance imaging : JMRI.

[40]  B. Rutt,et al.  Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state , 2003, Magnetic resonance in medicine.