Estimates for the covariant derivative of the heat semigroup on differential forms, and covariant Riesz transforms

Abstract. With ~ ∆j ≥ 0 is the uniquely determined self-adjoint realization of the Laplace operator acting on j-forms on a geodesically complete Riemannian manifoldM and ∇ the Levi-Civita covariant derivative, we prove amongst other things • a Li-Yau type heat kernel bound for ∇e−t ∆j , if the curvature tensor of M and its covariant derivative are bounded, • an exponentially weighted L bound for the heat kernel of ∇e−t ∆j , if the curvature tensor of M and its covariant derivative are bounded, • that ∇e−t ∆j is bounded in L for all 1 ≤ p < ∞, if the curvature tensor of M and its covariant derivative are bounded, • a second order Davies-Gaffney estimate (in terms of ∇ and ~ ∆j) for e−t ∆j for small times, if the j-th degree Bochner-Lichnerowicz potential Vj = ~ ∆j − ∇†∇ of M is bounded from below (where V1 = Ric), which is shown to fail for large times if Vj is bounded. Based on these results, we formulate a conjecture on the boundedness of the covariant local Riesz-transform ∇(~ ∆j + κ) in L for all 1 ≤ p < ∞ (which we prove for 1 ≤ p ≤ 2), and explain its implications to geometric analysis, such as the L-Calderón-Zygmund inequality. Our main technical tool is a Bismut derivative formula for ∇e−t ∆j .

[1]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[2]  Derivative Estimates of Semigroups and Riesz Transforms on Vector Bundles , 2004 .

[3]  Anton Thalmaier,et al.  Gradient Estimates for Harmonic Functions on Regular Domains in Riemannian Manifolds , 1998 .

[4]  Batu Guneysu,et al.  The Calder\'on-Zygmund inequality and Sobolev spaces on noncompact Riemannian manifolds , 2014, 1406.0747.

[5]  Adam Sikora Riesz transform, Gaussian bounds and the method of wave equation , 2003 .

[6]  J. Glover,et al.  Generalized Schrödinger Semigroups , 1993 .

[7]  Y. Gliklikh Stochastic Differential Equations on Manifolds , 1996 .

[8]  Patrick Breuning Immersions with Bounded Second Fundamental Form , 2012, 1201.4562.

[9]  B. Güneysu Covariant Schrödinger Semigroups on Riemannian Manifolds , 2017 .

[10]  G. Veronelli,et al.  The $$L^p$$-Calderón–Zygmund inequality on non-compact manifolds of positive curvature , 2020, Annals of Global Analysis and Geometry.

[11]  Paul Cherno Essential self-adjointness of powers of generators of hyperbolic equations , 1973 .

[12]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[13]  Y. Gliklikh Stochastic Analysis on Manifolds , 2011 .

[14]  P. Bérard Spectral Geometry: Direct and Inverse Problems , 1986 .

[15]  S. Boldt,et al.  Scattering Theory and Spectral Stability under a Ricci Flow for Dirac Operators , 2020, 2003.10204.

[16]  P. Auscher,et al.  Hardy Spaces of Differential Forms on Riemannian Manifolds , 2006, math/0611334.

[17]  D. Bakry Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée , 1987 .

[18]  Anton Thalmaier,et al.  Heat Equation Derivative Formulas for Vector Bundles , 2001 .

[19]  Karl-Theodor Sturm,et al.  Heat kernel bounds on manifolds , 1992 .

[20]  X. Duong,et al.  Riesz transforms for 1 ≤ p ≤ 2 , 1999 .

[21]  B. Güneysu,et al.  Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}$$\end{document}-interpolation inequalities and global Sobolev , 2018, Annali di Matematica Pura ed Applicata (1923 -).

[22]  A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces , 2013, 1311.0367.

[23]  Adam S. Sikora,et al.  Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem , 2006, math/0609429.

[24]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[25]  Batu Guneysu On the semimartingale property of Brownian bridges on complete manifolds , 2016, Latin American Journal of Probability and Mathematical Statistics.

[26]  G. Weiss,et al.  Extensions of Hardy spaces and their use in analysis , 1977 .

[27]  Riesz transform on manifolds and heat kernel regularity , 2004, math/0411374.

[28]  Essential self-adjointness of Schrödinger-type operators on manifolds , 2002, math/0201231.