Analysis of SCA8, SCA10, SCA12, SCA17 and SCA19 in patients with unknown spinocerebellar ataxia: a Thai multicentre study

[1]  T. Mikkelsen,et al.  SCA 17 phenotype with intermediate triplet repeat number , 2014, Journal of the Neurological Sciences.

[2]  S. Tiamkao,et al.  Glucocerebrosidase mutations in Thai patients with Parkinson's disease. , 2014, Parkinsonism & related disorders.

[3]  A. Ingsathit,et al.  Clinical analysis of adult-onset spinocerebellar ataxias in Thailand , 2014, BMC Neurology.

[4]  P. Tsai,et al.  Mutations in KCND3 cause spinocerebellar ataxia type 22 , 2012, Annals of neurology.

[5]  C. Wijmenga,et al.  Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19 , 2012, Annals of neurology.

[6]  K. Xia,et al.  Spinocerebellar ataxias in mainland China: an updated genetic analysis among a large cohort of familial and sporadic cases. , 2011, Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences.

[7]  Thomas Klockgether,et al.  Milestones in ataxia , 2011, Movement disorders : official journal of the Movement Disorder Society.

[8]  S. Paek,et al.  Spinocerebellar ataxia type 17 mutation as a causative and susceptibility gene in parkinsonism , 2009, Neurology.

[9]  K. Ohno,et al.  Ancestral Origin of the ATTCT Repeat Expansion in Spinocerebellar Ataxia Type 10 (SCA10) , 2009, PloS one.

[10]  J. Schwankhaus,et al.  Case of spinocerebellar ataxia type 17 (SCA17) associated with only 41 repeats of the TATA‐binding protein (TBP) gene , 2007, Movement disorders : official journal of the Movement Disorder Society.

[11]  T. Ebner,et al.  Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8 , 2006, Nature Genetics.

[12]  Xunhua Li,et al.  [Molecular genetics and its clinical application in the diagnosis of spinocerebellar ataxias]. , 2005, Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics.

[13]  T. Ashizawa,et al.  Detection of large pathogenic expansions in FRDA1, SCA10, and SCA12 genes using a simple fluorescent repeat-primed PCR assay. , 2004, The Journal of molecular diagnostics : JMD.

[14]  K. Gwinn‐Hardy,et al.  Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease , 2004, Clinical genetics.

[15]  Osamu Onodera,et al.  SCA17 homozygote showing Huntington's disease‐like phenotype , 2004, Annals of neurology.

[16]  G. Coppola,et al.  Intergenerational instability and marked anticipation in SCA-17 , 2003, Neurology.

[17]  Olaf Riess,et al.  Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17) , 2003, Annals of neurology.

[18]  A. Durr,et al.  Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. , 2003, Brain : a journal of neurology.

[19]  Bing-Wen Soong,et al.  A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. , 2003, Brain : a journal of neurology.

[20]  E. Schwinger,et al.  Phenotypical variability of expanded alleles in the TATA-binding protein gene , 2003, Journal of Neurology.

[21]  E. Tan,et al.  Prevalence and ethnic differences of autosomal‐dominant cerebellar ataxia in Singapore , 2002, Clinical genetics.

[22]  M. Oda,et al.  Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 Japanese patients. , 2002, American journal of medical genetics.

[23]  I. Kanazawa,et al.  SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. , 2001, Human molecular genetics.

[24]  R. Sinke,et al.  Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia , 2001, Journal of Neurology.

[25]  C. Ross,et al.  SCA12 is a rare locus for autosomal dominant cerebellar ataxia: A study of an Indian family , 2001, Annals of neurology.

[26]  Mikio Shoji,et al.  Asymptomatic CTG expansion at the SCA8 locus is associated with cerebellar atrophy on MRI , 2000, Journal of the Neurological Sciences.

[27]  Takanori Yamagata,et al.  Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10 , 2000, Nature Genetics.

[28]  L. Schut,et al.  Spinocerebellar ataxia type 8 , 2000, Neurology.

[29]  A. Moorman,et al.  Genomic organisation and chromosomal localisation of two members of the KCND ion channel family, KCND2 and KCND3 , 2000, Human Genetics.

[30]  Melvin G McInnis,et al.  Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12 , 1999, Nature Genetics.

[31]  S Kobayashi,et al.  A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? , 1999, Human molecular genetics.

[32]  T. Bird,et al.  An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8) , 1999, Nature Genetics.

[33]  D. Tarsy,et al.  Spinocerebellar Ataxia-Type 17 , 2012 .

[34]  L. Schut,et al.  Spinocerebellar Ataxia Type 8 , 2006 .

[35]  R. Sinke,et al.  SCA19 and SCA22: evidence for one locus with a worldwide distribution. , 2004, Brain : a journal of neurology.