Generalized Hertz model for bimodal nanomechanical mapping

Bimodal atomic force microscopy uses a cantilever that is simultaneously driven at two of its eigenmodes (resonant modes). Parameters associated with both resonances can be measured and used to extract quantitative nanomechanical information about the sample surface. Driving the first eigenmode at a large amplitude and a higher eigenmode at a small amplitude simultaneously provides four independent observables that are sensitive to the tip–sample nanomechanical interaction parameters. To demonstrate this, a generalized theoretical framework for extracting nanomechanical sample properties from bimodal experiments is presented based on Hertzian contact mechanics. Three modes of operation for measuring cantilever parameters are considered: amplitude, phase, and frequency modulation. The experimental equivalence of all three modes is demonstrated on measurements of the second eigenmode parameters. The contact mechanics theory is then extended to power-law tip shape geometries, which is applied to analyze the experimental data and extract a shape and size of the tip interacting with a polystyrene surface.

[1]  Antonio Fábio,et al.  Polymer , 2018, Definitions.

[2]  W. Meinhold,et al.  Calibration of higher eigenmodes of cantilevers. , 2016, The Review of scientific instruments.

[3]  A. Labuda Daniell method for power spectral density estimation in atomic force microscopy. , 2016, The Review of scientific instruments.

[4]  Ricardo Garcia,et al.  Fast nanomechanical spectroscopy of soft matter , 2014, Nature Communications.

[5]  T. Schäffer,et al.  Creep compliance mapping by atomic force microscopy , 2014 .

[6]  S. Solares,et al.  Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case , 2013, Beilstein journal of nanotechnology.

[7]  S. Solares,et al.  Amplitude modulation dynamic force microscopy imaging in liquids with atomic resolution: comparison of phase contrasts in single and dual mode operation , 2013, Nanotechnology.

[8]  Valentin L. Popov,et al.  Method of reduction of dimensionality in contact and friction mechanics: A linkage between micro and macro scales , 2013 .

[9]  James R Friend,et al.  Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. , 2012, The Review of scientific instruments.

[10]  Markus Heß,et al.  On the reduction method of dimensionality: The exact mapping of axisymmetric contact problems with and without adhesion , 2012 .

[11]  Daniel Platz,et al.  Model-based extraction of material properties in multifrequency atomic force microscopy , 2012 .

[12]  K. Kobayashi,et al.  Retrofitting an atomic force microscope with photothermal excitation for a clean cantilever response in low Q environments. , 2012, The Review of scientific instruments.

[13]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[14]  P. Grütter,et al.  Atomic force microscopy in viscous ionic liquids. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[15]  Ricardo Garcia,et al.  Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus , 2012, Beilstein journal of nanotechnology.

[16]  R. Proksch,et al.  Loss tangent imaging: Theory and simulations of repulsive-mode tapping atomic force microscopy , 2012 .

[17]  Philip A. Yuya,et al.  Viscoelastic property mapping with contact resonance force microscopy. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[18]  P. Grutter,et al.  Decoupling conservative and dissipative forces in frequency modulation atomic force microscopy , 2011 .

[19]  P. Grutter,et al.  Comparison of photothermal and piezoacoustic excitation methods for frequency and phase modulation atomic force microscopy in liquid environments , 2011 .

[20]  K. Matsushige,et al.  Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy. , 2011, The Review of scientific instruments.

[21]  Abdullah Atalar,et al.  Force spectroscopy using bimodal frequency modulation atomic force microscopy , 2011 .

[22]  T. Brastaviceanu,et al.  Optical detection system for probing cantilever deflections parallel to a sample surface. , 2011, The Review of scientific instruments.

[23]  Santiago D. Solares,et al.  Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy , 2010 .

[24]  Roger Proksch,et al.  Energy dissipation measurements in frequency-modulated scanning probe microscopy , 2010, Nanotechnology.

[25]  Ernst Meyer,et al.  Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy. , 2009, Physical review letters.

[26]  R. Proksch,et al.  Bimodal magnetic force microscopy: Separation of short and long range forces , 2009 .

[27]  A. Katan,et al.  Quantitative force versus distance measurements in amplitude modulation AFM: a novel force inversion technique , 2009, Nanotechnology.

[28]  R. Stark Dynamics of repulsive dual-frequency atomic force microscopy , 2009 .

[29]  Arvind Raman,et al.  Inverting amplitude and phase to reconstruct tip–sample interaction forces in tapping mode atomic force microscopy , 2008, Nanotechnology.

[30]  Hendrik Hölscher,et al.  Theory of phase-modulation atomic force microscopy with constant-oscillation amplitude , 2008 .

[31]  Ricardo Garcia,et al.  Theory of multifrequency atomic force microscopy. , 2008, Physical review letters.

[32]  Ricardo Garcia,et al.  Frequency response of an atomic force microscope in liquids and air: Magnetic versus acoustic excitation , 2007 .

[33]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[34]  Olav Solgaard,et al.  An atomic force microscope tip designed to measure time-varying nanomechanical forces , 2007, Nature Nanotechnology.

[35]  Yan Jun Li,et al.  Elimination of instabilities in phase shift curves in phase-modulation atomic force microscopy in constant-amplitude mode , 2007 .

[36]  Takeshi Fukuma,et al.  Phase modulation atomic force microscope with true atomic resolution , 2006 .

[37]  R. Garcia,et al.  Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes , 2006 .

[38]  Hendrik Hölscher,et al.  Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy , 2006 .

[39]  Roger Proksch,et al.  Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy , 2006 .

[40]  Shinya Sasaki,et al.  Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy , 2006 .

[41]  Manhee Lee,et al.  General theory of amplitude-modulation atomic force microscopy. , 2006, Physical review letters.

[42]  R. Proksch,et al.  Noninvasive determination of optical lever sensitivity in atomic force microscopy , 2006 .

[43]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[44]  John E. Sader,et al.  Quantitative force measurements using frequency modulation atomic force microscopy—theoretical foundations , 2005 .

[45]  John E. Sader,et al.  Accurate formulas for interaction force and energy in frequency modulation force spectroscopy , 2004 .

[46]  Ricardo Garcia,et al.  Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever , 2004 .

[47]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[48]  Ricardo Garcia,et al.  Unifying theory of tapping-mode atomic-force microscopy , 2002 .

[49]  B. Gotsmann,et al.  Dynamic AFM using the FM technique with constant excitation amplitude , 2002 .

[50]  J. Gilman,et al.  Nanotechnology , 2001 .

[51]  Sokolov,et al.  Shear modulation force microscopy study of near surface glass transition temperatures , 2000, Physical review letters.

[52]  Amelio,et al.  Quantitative determination of contact stiffness using atomic force acoustic microscopy , 2000, Ultrasonics.

[53]  U. Dürig,et al.  Extracting interaction forces and complementary observables in dynamic probe microscopy , 2000 .

[54]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[55]  Sabine Hild,et al.  The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation , 1997 .

[56]  M. Salmeron,et al.  Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy. , 1997, Chemical reviews.

[57]  Myung-Hwan Whangbo,et al.  Phase imaging and stiffness in tapping-mode atomic force microscopy , 1997 .

[58]  Ricardo Garcia,et al.  Deformation, Contact Time, and Phase Contrast in Tapping Mode Scanning Force Microscopy , 1996 .

[59]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[60]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .

[61]  M. Radmacher,et al.  Imaging viscoelasticity by force modulation with the atomic force microscope. , 1993, Biophysical journal.

[62]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[63]  P. Hansma,et al.  Using force modulation to image surface elasticities with the atomic force microscope , 1991 .

[64]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[65]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[66]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[67]  Franz J. Giessibl,et al.  A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy , 2001 .

[68]  J. Barbera,et al.  Contact mechanics , 1999 .

[69]  G. Dietler,et al.  Force-distance curves by atomic force microscopy , 1999 .

[70]  H. Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[71]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[72]  J Blitz Ultrasonics , 1967 .