Digital curvature estimation for left ventricular shape analysis

Abstract Curvature estimation from noisy digital curves is addressed for shape analysis of angiographic left ventricle (LV) images. A simple and fast algorithm, based on Fourier series approximation, changes the harmonic number and filter window along the closed (or partially open) contours to optimize smoothness and reconstruction errors. The curvatures estimated on a set of ventricle-shaped models are significantly closer to their analytical values than those assessed by four other methods. Preliminary results on LV data are presented.

[1]  Anthony G. Constantinides,et al.  Digital filters and their applications , 1978 .

[2]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Filson H. Glanz,et al.  An Autoregressive Model Approach to Two-Dimensional Shape Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Arnold W. M. Smeulders,et al.  Length estimators for digitized contours , 1987, Comput. Vis. Graph. Image Process..

[5]  S. Marshall,et al.  Review of shape coding techniques , 1989, Image Vis. Comput..

[6]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  John A. Saghri,et al.  Analysis of the Precision of Generalized Chain Codes for the Representation of Planar Curves , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  David Vernon,et al.  Two-dimensional object recognition using partial contours , 1987, Image Vis. Comput..

[9]  Charles R. Giardina,et al.  Elliptic Fourier features of a closed contour , 1982, Comput. Graph. Image Process..

[10]  T. Pavlidis Algorithms for Graphics and Image Processing , 1981, Springer Berlin Heidelberg.

[11]  Herman J. Woltring,et al.  A fortran package for generalized, cross-validatory spline smoothing and differentiation , 1986 .

[12]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[14]  P. Bloomfield,et al.  Numerical differentiation procedures for non-exact data , 1974 .

[15]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[16]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[17]  M. Baroni,et al.  LV wall motion: from quantitative analysis to knowledge-based understanding , 1989, [1989] Proceedings. Computers in Cardiology.

[18]  M. Baroni,et al.  Assessing LV wall motion by frame-to-frame curvature matching and optical flow estimation , 1991, [1991] Proceedings Computers in Cardiology.

[19]  H. Lanshammar On precision limits for derivatives numerically calculated from noisy data. , 1982, Journal of biomechanics.

[20]  C. K. Yuen,et al.  Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  Rama Chellappa,et al.  Fourier Coding of Image Boundaries , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Roland T. Chin,et al.  On the Detection of Dominant Points on Digital Curves , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  G W Moore,et al.  Shape of the human cardiac ventricles. , 1978, The American journal of cardiology.