Trends towards Lower Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Teflubenzuron in Brazil: An Evidence for Field-Evolved Resistance

Simple Summary The fall armyworm (FAW), Spodoptera frugiperda (J.E Smith), is an important insect pest that can cause severe damage to a wide range of economically important crops. Many insecticides are used to manage the FAW in Brazil, including teflubenzuron. Here, we monitored the susceptibility of the FAW to teflubenzuron in more than 200 field-collected populations from major corn-growing regions of Brazil, from 2004 to 2020. Overall, our findings showed that the FAWs susceptibility to this insecticide reduced over the years, providing evidence of field-evolved resistance. We discuss the possible causes for this loss in the susceptibility to teflubenzuron in S. frugiperda and focus on the importance of implementing resistance management strategies. Abstract Susceptibility monitoring to insecticides is a key component to implementing insecticide resistance management (IRM) programs. In this research, the susceptibility to teflubenzuron in Spodoptera frugiperda (J.E Smith) was monitored in more than 200 field-collected populations from major corn-growing regions of Brazil, from 2004 to 2020. Initially, we defined a diagnostic concentration of 10 µg mL−1 of teflubenzuron using a diet-overlay bioassay for monitoring the susceptibility. A variation in the susceptibility to teflubenzuron in S. frugiperda was detected among populations from different locations. We also detected a significant reduction in the susceptibility to teflubenzuron throughout time in all the populations of S. frugiperda evaluated, with larval survival at diagnostic concentration varying from values of <5% in 2004 to up 80% in 2020. Thus, this research provides evidence of field-evolved resistance of S. frugiperda to teflubenzuron and reinforces that IRM practices are urgently needed to be implemented in Brazil.

[1]  J. van den Berg,et al.  Special Collection: World-Scale Ecology and Management of Fall Armyworm ( Spodoptera frugiperda ) Chemical Control and Insecticide Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) , 2022 .

[2]  C. Omoto,et al.  Evidence of field-evolved resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) to emamectin benzoate in Brazil , 2022, Crop Protection.

[3]  R. Nauen,et al.  Large-Scale Monitoring of the Frequency of Ryanodine Receptor Target-Site Mutations Conferring Diamide Resistance in Brazilian Field Populations of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) , 2022, Insects.

[4]  M. Poletto,et al.  Self-limiting fall armyworm: a new approach in development for sustainable crop protection and resistance management , 2022, BMC Biotechnology.

[5]  A. Polaszek,et al.  Integrative taxonomy and phylogeography of Telenomus remus (Scelionidae), with the first record of natural parasitism of Spodoptera spp. in Brazil , 2021, Scientific Reports.

[6]  C. Omoto,et al.  Inheritance patterns, cross-resistance and synergism in Spodoptera frugiperda (Lepidoptera: Noctuidae) resistant to emamectin benzoate. , 2021, Pest management science.

[7]  Á. Guerrero,et al.  Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management , 2021, Insects.

[8]  A. Michel,et al.  There is more than chitin synthase in insect resistance to benzoylureas: molecular markers associated with teflubenzuron resistance in Spodoptera frugiperda , 2021, Journal of Pest Science.

[9]  M. R. Campos,et al.  High resistance to insect growth disruptors and control failure likelihood in Brazilian populations of the tomato pinworm Tuta absoluta , 2021, Phytoparasitica.

[10]  R. F. Stacke,et al.  Field-evolved resistance to chitin synthesis inhibitor insecticides by soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae), in Brazil. , 2020, Chemosphere.

[11]  A. Bolzan,et al.  Resistance of Spodoptera frugiperda (Lepidoptera:Noctuidae) to spinetoram: Inheritance and cross-resistance to spinosad. , 2020, Pest management science.

[12]  A. Bolzan,et al.  Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. , 2019, Pest management science.

[13]  Targeting Chitin-containing Organisms , 2019, Advances in Experimental Medicine and Biology.

[14]  C. Omoto,et al.  Baseline Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) to SfMNPV and Evaluation of Cross-Resistance to Major Insecticides and Bt Proteins , 2018, Journal of Economic Entomology.

[15]  G. Deep,et al.  Novel insecticides: A potential tool for the management of insect pest , 2018 .

[16]  J. Peterson,et al.  Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas , 2018, African Entomology.

[17]  Scott C. Merrill,et al.  Increase in crop losses to insect pests in a warming climate , 2018, Science.

[18]  K. Chandrashekara,et al.  Occurrence of the New Invasive Pest, Fall Armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the Maize Fields of Karnataka, India , 2018, Current Science.

[19]  D. Okuma,et al.  Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. , 2018, Pest management science.

[20]  L. M. Burtet,et al.  Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. , 2017, Pest management science.

[21]  L. Kumar,et al.  Future climate scenarios project a decrease in the risk of fall armyworm outbreaks , 2017, The Journal of Agricultural Science.

[22]  M. Tamò,et al.  First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa , 2016, PloS one.

[23]  A. Martins,et al.  Insecticide Resistance and Fitness Cost , 2016 .

[24]  F. L. Cônsoli,et al.  Comparative transcriptome analysis of lufenuron-resistant and susceptible strains of Spodoptera frugiperda (Lepidoptera: Noctuidae) , 2015, BMC Genomics.

[25]  Ralf Nauen,et al.  IRAC: Mode of action classification and insecticide resistance management. , 2015, Pesticide biochemistry and physiology.

[26]  R. Nagoshi,et al.  Haplotype Profile Comparisons Between Spodoptera frugiperda (Lepidoptera: Noctuidae) Populations from Mexico with Those from Puerto Rico, South America, and the United States and Their Implications to Migratory Behavior , 2015, Journal of economic entomology.

[27]  J. Hardke,et al.  Fall Armyworm (Lepidoptera: Noctuidae) Ecology in Southeastern Cotton , 2015 .

[28]  Rodrigo J. Sorgatto,et al.  Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil , 2014 .

[29]  M. Williamson,et al.  Investigating the Molecular Mechanisms of Organophosphate and Pyrethroid Resistance in the Fall Armyworm Spodoptera frugiperda , 2013, PloS one.

[30]  C. Czepak,et al.  Primeiro registro de ocorrência de Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) no Brasil , 2013 .

[31]  H. Merzendorfer Chitin synthesis inhibitors: old molecules and new developments , 2013, Insect science.

[32]  M. Ghanim,et al.  Fitness costs associated with insecticide resistance. , 2012, Pest management science.

[33]  C. B. Hoffmann-Campo,et al.  Lepidopteran larva consumption of soybean foliage: basis for developing multiple-species economic thresholds for pest management decisions. , 2011, Pest management science.

[34]  B. Tabashnik,et al.  Fitness costs of insect resistance to Bacillus thuringiensis. , 2009, Annual review of entomology.

[35]  E. Cohen,et al.  Chitin synthesis and inhibition: a revisit. , 2001, Pest management science.

[36]  Celso Omoto,et al.  Herança da resistência de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) a lambda-cialotrina , 2001 .

[37]  W. S. Abbott,et al.  A method of computing the effectiveness of an insecticide. 1925. , 1925, Journal of the American Mosquito Control Association.

[38]  S. O. Andersen Biochemistry of Insect Cuticle , 1979 .

[39]  W. Eck Mode of action of two benzoylphenyl ureas as inhibitors of chitin synthesis in insects , 1979 .

[40]  W. Dickerson,et al.  Velvetbean Caterpillar: A Rearing Procedure and Artificial Medium , 1976 .