Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures

[1]  Winfried Weissenhorn,et al.  Virus membrane fusion , 2007, FEBS Letters.

[2]  R. Lamb,et al.  Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Lamb,et al.  Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. , 2005, Structure.

[4]  R. Lamb,et al.  Conserved Glycine Residues in the Fusion Peptide of the Paramyxovirus Fusion Protein Regulate Activation of the Native State , 2004, Journal of Virology.

[5]  R. Lamb,et al.  Activation of a paramyxovirus fusion protein is modulated by inside-out signaling from the cytoplasmic tail. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Taylor,et al.  Second Sialic Acid Binding Site in Newcastle Disease Virus Hemagglutinin-Neuraminidase: Implications for Fusion , 2004, Journal of Virology.

[7]  M. Lawrence,et al.  Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. , 2004, Journal of molecular biology.

[8]  R. Lamb,et al.  Virology: A class act , 2004, Nature.

[9]  R. Lamb,et al.  A dual-functional paramyxovirus F protein regulatory switch segment , 2003, The Journal of cell biology.

[10]  T. Morrison Structure and function of a paramyxovirus fusion protein. , 2003, Biochimica et biophysica acta.

[11]  M. Lawrence,et al.  The structural biology of type I viral membrane fusion , 2003, Nature Reviews Molecular Cell Biology.

[12]  R. Lamb,et al.  Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion , 2001, The EMBO journal.

[13]  S. Crennell,et al.  Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase , 2001, Nature Structural Biology.

[14]  M. Lawrence,et al.  The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. , 2001, Structure.

[15]  P. S. Kim,et al.  Structural characterization of the human respiratory syncytial virus fusion protein core. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Lamb,et al.  Virus Membrane Fusion Proteins: Biological Machines that Undergo a Metamorphosis , 2000, Bioscience reports.

[17]  G. Melikyan,et al.  Evidence That the Transition of HIV-1 Gp41 into a Six-Helix Bundle, Not the Bundle Configuration, Induces Membrane Fusion , 2000, The Journal of cell biology.

[18]  L. McGinnes,et al.  A Single Amino Acid Change in the Newcastle Disease Virus Fusion Protein Alters the Requirement for HN Protein in Fusion , 2000, Journal of Virology.

[19]  R. Lamb,et al.  Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation. , 2000, Virology.

[20]  Y. Ito,et al.  An amino acid in the heptad repeat 1 domain is important for the haemagglutinin-neuraminidase-independent fusing activity of simian virus 5 fusion protein. , 2000, The Journal of general virology.

[21]  J. Skehel,et al.  N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Center,et al.  Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. S. Kim,et al.  Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Lamb,et al.  Structural basis for paramyxovirus-mediated membrane fusion. , 1999, Molecular cell.

[25]  W. Weissenhorn,et al.  Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. , 1998, Molecular cell.

[26]  David J Stevens,et al.  Structure of the Hemagglutinin Precursor Cleavage Site, a Determinant of Influenza Pathogenicity and the Origin of the Labile Conformation , 1998, Cell.

[27]  A. Gronenborn,et al.  Three‐dimensional solution structure of the 44 kDa ectodomain of SIV gp41 , 1998, The EMBO journal.

[28]  R. Lamb,et al.  A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. , 1998, Virology.

[29]  C. Weiss,et al.  Capture of an early fusion-active conformation of HIV-1 gp41 , 1998, Nature Structural Biology.

[30]  P. Bronk,et al.  The Pathway of Membrane Fusion Catalyzed by Influenza Hemagglutinin: Restriction of Lipids, Hemifusion, and Lipidic Fusion Pore Formation , 1998, The Journal of cell biology.

[31]  R. Damico,et al.  Receptor-triggered membrane association of a model retroviral glycoprotein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Agard,et al.  Activation of a Retroviral Membrane Fusion Protein: Soluble Receptor-induced Liposome Binding of the ALSV Envelope Glycoprotein , 1997, The Journal of cell biology.

[33]  K. Tan,et al.  Atomic structure of a thermostable subdomain of HIV-1 gp41. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  W. Weissenhorn,et al.  Assembly of a rod-shaped chimera of a trimeric GCN4 zipper and the HIV-1 gp41 ectodomain expressed in Escherichia coli. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Deborah Fass,et al.  Core Structure of gp41 from the HIV Envelope Glycoprotein , 1997, Cell.

[36]  J. Zimmerberg,et al.  An Early Stage of Membrane Fusion Mediated by the Low pH Conformation of Influenza Hemagglutinin Depends upon Membrane Lipids , 1997, The Journal of cell biology.

[37]  P. S. Kim,et al.  Retrovirus envelope domain at 1.7 Å resolution , 1996, Nature Structural Biology.

[38]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[39]  R. Lamb Paramyxovirus fusion: a hypothesis for changes. , 1993, Virology.

[40]  Q. Sattentau,et al.  Dissociation of gp120 from HIV-1 virions induced by soluble CD4. , 1990, Science.

[41]  F. Gaeta,et al.  ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. , 1990, Science.

[42]  R. Lamb,et al.  Different roles of individual N-linked oligosaccharide chains in folding, assembly, and transport of the simian virus 5 hemagglutinin-neuraminidase , 1990, Molecular and cellular biology.

[43]  R. Lamb,et al.  Intracellular maturation and transport of the SV5 type II glycoprotein hemagglutinin-neuraminidase: specific and transient association with GRP78-BiP in the endoplasmic reticulum and extensive internalization from the cell surface , 1989, The Journal of cell biology.

[44]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[45]  J. White,et al.  The Many Mechanisms of Viral Membrane Fusion Proteins , 2005, Current topics in microbiology and immunology.

[46]  D. Fass Conformational changes in enveloped virus surface proteins during cell entry. , 2003, Advances in protein chemistry.

[47]  P S Kim,et al.  Mechanisms of viral membrane fusion and its inhibition. , 2001, Annual review of biochemistry.

[48]  J. Skehel,et al.  Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. , 2000, Annual review of biochemistry.

[49]  A. Lamb Paramyxoviridae : The virus and their replication , 1996 .

[50]  P. S. Kim,et al.  Retrovirus envelope domain at 1.7 angstrom resolution. , 1996, Nature structural biology.

[51]  T. Wolfsberg,et al.  Virus-cell and cell-cell fusion. , 1996, Annual review of cell and developmental biology.

[52]  R. Lamb,et al.  Orthomyxoviridae: The Viruses and Their Replication. , 1996 .