Spatiotemporal deformation of multi-soliton to (2 + 1)-dimensional KdV equation

This work proposes a three-wave method with a perturbation parameter to obtain exact multi-soliton solutions of nonlinear evolution equation. The ($$2+1$$2+1)-dimensional KdV equation is used as an example to illustrate the effectiveness of the suggested method. Using this method, new multi-soliton solutions are given. Specially, spatiotemporal dynamics of breather two-soliton and multi-soliton including deformation between bright and dark multi-soliton each other, and deflection with different directions and angles are investigated and exhibited to ($$2+1$$2+1)D KdV equation. Some new nonlinear phenomena are revealed under the small perturbation of parameter.

[1]  Sen-Yue Lou,et al.  Symmetries and algebras of the integrable dispersive long wave equations in (2+1)-dimensional spaces , 1994 .

[2]  Anjan Biswas,et al.  Topological solitons and cnoidal waves to a few nonlinear wave equations in theoretical physics , 2013 .

[3]  Jian-Ping Meng,et al.  Nonpropagating Solitary Waves in (2+1)-Dimensional Nonlinear Systems , 2005 .

[4]  M. Boiti,et al.  On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions , 1986 .

[5]  Anjan Biswas,et al.  Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients , 2009 .

[6]  M. Eslami,et al.  1-Soliton solution of KdV6 equation , 2015 .

[7]  M. Veith,et al.  Cyclische Diazastannylene, XVIII [1]Zur Frage der Bindungsbeschreibung in Polyedern des Typs Sn4X3Y:Die Kristall-und Molekülstrukturen von Sn4(NtBu)4 und Sn4(NtBu)3O / Cyclic Diazastannylenes, XVIII [1]Bonding Description in Polyhedra of the Sn4X3Y-Type:The Crystal and Molecular Structures of Sn4(Nt , 1983 .

[8]  Z. Dai,et al.  Double Exp-function Method and Application , 2009 .

[9]  A. Pogrebkov On the formulation of the Painlevé test as a criterion of complete integrability of partial differential equations , 1989 .

[10]  Micheline Musette,et al.  Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations , 1991 .

[11]  K. M. Tamizhmani,et al.  The Infinite-Dimensional Lie Algebraic Structure and the Symmetry Reduction of a Nonlinear Higher-Dimensional Equation , 1990 .

[12]  Zhenyun Qin On Periodic Wave Solution and Asymptotic Property of KdV–Sawada–Kotera Equation , 2007 .

[13]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[14]  Houria Triki,et al.  SOLITONS AND OTHER SOLUTIONS TO THE (3+1)- DIMENSIONAL EXTENDED KADOMTSEV-PETVIASHVILI EQUATION WITH POWER LAW NONLINEARITY , 2013 .

[15]  Alfred Ramani,et al.  Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? , 1986 .

[16]  J. Weiss,et al.  The sine‐Gordon equations: Complete and partial integrability , 1984 .

[17]  Anjan Biswas,et al.  New Solutions for (1+1)-Dimensional and (2+1)-Dimensional Kaup–Kupershmidt Equations , 2013 .

[18]  Z. Dai,et al.  Resonance and deflection of multi-soliton to the (2+1)-dimensional Kadomtsev–Petviashvili equation , 2014 .

[19]  Yan-ze Peng,et al.  The singular manifold method and exact periodic wave solutions to a restricted BLP dispersive long wave system , 2005 .

[20]  C. Zheng,et al.  New variable separation excitations of (2 + 1)-dimensional dispersive long-water wave system obtained by an extended mapping approach☆ , 2005 .

[21]  P. Rosenau,et al.  Nonlinear dispersion and compact structures. , 1994, Physical review letters.

[22]  Anjan Biswas,et al.  Solitons and other solutions to quantum Zakharov–Kuznetsov equation in quantum magneto-plasmas , 2013 .

[23]  J. Weiss THE PAINLEVE PROPERTY FOR PARTIAL DIFFERENTIAL EQUATIONS. II. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE , 1983 .

[24]  Xin-Yi Gao Comment on “Solitons, Bäcklund transformation, and Lax pair for the (2 + 1)-dimensional Boiti-Leon- Pempinelli equation for the water waves” [J. Math. Phys. 51, 093519 (2010)] , 2015 .

[25]  Wen-Xiu Ma,et al.  Computers and Mathematics with Applications Linear Superposition Principle Applying to Hirota Bilinear Equations , 2022 .

[26]  Huai-Ning Wu,et al.  Distributed proportional plus second-order spatial derivative control for distributed parameter systems subject to spatiotemporal uncertainties , 2014 .

[27]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[28]  Ying Zhang,et al.  Localized excitations in (2+1)-dimensional systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Wenxiu Ma,et al.  A multiple exp-function method for nonlinear differential equations and its application , 2010, 1010.3324.

[30]  Anjan Biswas,et al.  Perturbation of dispersive shallow water waves , 2013 .

[31]  Wen-Xiu Ma,et al.  Extended transformed rational function method and applications to complexiton solutions , 2014, Appl. Math. Comput..

[32]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[33]  Anjan Biswas,et al.  Soliton Solution and Conservation Law of Gear-Grimshaw Model for Shallow Water Waves , 2014 .

[34]  A. Kara,et al.  Additional conservation laws for Rosenau–KdV–RLW equation with power law nonlinearity by Lie symmetry , 2015 .

[35]  S. Lou Searching for Higher Dimensional Integrable Models from Lower Ones via Painlevé Analysis , 1998 .

[36]  Anjan Biswas,et al.  Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi's elliptic function method , 2013, Commun. Nonlinear Sci. Numer. Simul..

[37]  Bo Tian,et al.  Solitons, Bäcklund transformation, and Lax pair for the "2 +1…-dimensional Boiti-Leon-Pempinelli equation for the water waves , 2010 .

[38]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[39]  Wenjun Liu,et al.  Types of coefficient constraints of coupled nonlinear Schrödinger equations for elastic and inelastic interactions between spatial solitons with symbolic computation , 2014 .

[40]  T. I. Garagash Modification of the Painlevé test for systems of nonlinear partial differential equations , 1994 .

[41]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[42]  W. Steeb,et al.  Liouville Equation, Painlevé Property and Bäcklund Transformation , 1983 .