Average waiting time of a symmetric polling system under Bernoulli scheduling

We consider a system of multiple queues served in cyclic order by a single server. At a visit of a server to each queue, the server works according to the Bernoulli scheduling service discipline. The system is assumed to be symmetric. By using both the stochastic decomposition property and an imbedded Markov chain, we derive an explicit expression of the average waiting time.

[1]  Bernd Meister,et al.  Waiting Lines and Times in a System with Polling , 1974, JACM.

[2]  Izhak Rubin,et al.  Message Delay Analysis for Polling and Token Multiple-Access Schemes for Local Communication Networks , 1983, IEEE J. Sel. Areas Commun..

[3]  Robert B. Cooper,et al.  Queues served in cyclic order , 1969 .

[4]  R. B. Cooper,et al.  Application of decomposition principle in M/G/1 vacation model to two continuum cyclic queueing models — Especially token-ring LANs , 1985, AT&T Technical Journal.

[5]  Theodore E. Tedijanto,et al.  Exact Results for the Cyclic-Service Queue with a Bernoulli Schedule , 1990, Perform. Evaluation.

[6]  Julian Keilson,et al.  Oscillating random walk models for GI / G /1 vacation systems with Bernoulli schedules , 1986 .

[7]  Michael J. Ferguson,et al.  Exact Results for Nonsymmetric Token Ring Systems , 1985, IEEE Trans. Commun..

[8]  Hideaki Takagi,et al.  Analysis of polling systems , 1986 .

[9]  S. W Fuhrmann,et al.  Symmetric queues served in cyclic order , 1985 .

[10]  Robert B. Cooper,et al.  Stochastic Decompositions in the M/G/1 Queue with Generalized Vacations , 1985, Oper. Res..

[11]  Hideaki Takagi,et al.  Queuing analysis of polling models , 1988, CSUR.

[12]  D. Sarkar,et al.  Expected waiting time for nonsymmetric cyclic queueing systems—exact results and applications , 1989 .

[13]  B. T. Doshi,et al.  Queueing systems with vacations — A survey , 1986, Queueing Syst. Theory Appl..

[14]  Robert B. Cooper Queues served in cyclic order: Waiting times , 1970, Bell Syst. Tech. J..

[15]  Leslie D. Servi Average Delay Approximation of M/G/1 Cyclic Service Queues with Bernoulli Schedules , 1986, IEEE J. Sel. Areas Commun..