An Evaluation of Background Subtraction for Object Detection Vis-a-Vis Mitigating Challenging Scenarios

Background subtraction is a popular technique for detecting objects moving across a fixed camera view. The performance of this paradigm is influenced by various challenges, such as object relocation, illumination change, cast shadows, waving background, camera shake, bootstrapping, camouflage, and so on. In this paper, we present a synopsis on the evolution of the background subtraction techniques over the last two decades. The different ways of mathematical modeling are taken into consideration to categorize the methods. We also evaluate the performance of some of the state-of-the-art techniques vis-a-vis the challenges associated. Eleven different algorithms of background subtraction have been simulated on thirty-four image sequences collected from five benchmark datasets. For each image sequence, seven performance metrics are evaluated and an exhaustive comparative analysis has been made to derive inferences. The potential findings in the result analysis are presented for future exploration. The obtained image and video results are uploaded at <;uri xlink:type="simple">https://sites.google.com/site/soaBSevaluation<;/uri>.

[1]  Simone Calderara,et al.  Reliable background suppression for complex scenes , 2006, VSSN '06.

[2]  Thomas B. Moeslund,et al.  Detection and removal of chromatic moving shadows in surveillance scenarios , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[3]  Larry S. Davis,et al.  A Robust Background Subtraction and Shadow Detection , 1999 .

[4]  David Suter,et al.  A consensus-based method for tracking: Modelling background scenario and foreground appearance , 2007, Pattern Recognit..

[5]  Brian C. Lovell,et al.  Improved Foreground Detection via Block-Based Classifier Cascade With Probabilistic Decision Integration , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[6]  Stan Sclaroff,et al.  Segmenting foreground objects from a dynamic textured background via a robust Kalman filter , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[7]  Antoine Vacavant,et al.  A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos , 2014, Comput. Vis. Image Underst..

[8]  Thierry Bouwmans,et al.  Foreground Detection Using the Choquet Integral , 2008, 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services.

[9]  Ahmed M. Elgammal Background Subtraction: Theory and Practice , 2014, Background Subtraction: Theory and Practice.

[10]  Azriel Rosenfeld,et al.  Tracking Groups of People , 2000, Comput. Vis. Image Underst..

[11]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  David Suter,et al.  A re-evaluation of mixture of Gaussian background modeling [video signal processing applications] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[13]  Thierry Bouwmans,et al.  Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey , 2011 .

[14]  Thierry Bouwmans,et al.  Modeling of Dynamic Backgrounds by Type-2 Fuzzy Gaussians Mixture Models , 2010 .

[15]  Massimo Piccardi,et al.  Mean-shift background image modelling , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[16]  Venkatesh Saligrama,et al.  Foreground-Adaptive Background Subtraction , 2009, IEEE Signal Processing Letters.

[17]  Ahmed M. Elgammal,et al.  A Framework for Feature Selection for Background Subtraction , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[20]  Thierry Bouwmans,et al.  Background Subtraction for Visual Surveillance , 2012, Handbook of Soft Computing for Video Surveillance.

[21]  Mingjun Wu,et al.  Spatio-temporal context for codebook-based dynamic background subtraction , 2010 .

[22]  Larry S. Davis,et al.  Efficient non-parametric adaptive color modeling using fast Gauss transform , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[23]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[24]  Quming Zhou,et al.  Tracking and Classifying Moving Objects from Video , 2001 .

[25]  Fatih Murat Porikli,et al.  CDnet 2014: An Expanded Change Detection Benchmark Dataset , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[26]  Brendt Wohlberg,et al.  Fast principal component pursuit via alternating minimization , 2013, 2013 IEEE International Conference on Image Processing.

[27]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[28]  Thierry Bouwmans,et al.  Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[29]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[30]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[31]  Borko Furht,et al.  Neural Network Approach to Background Modeling for Video Object Segmentation , 2007, IEEE Transactions on Neural Networks.

[32]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[33]  Gerhard Rigoll,et al.  Background segmentation with feedback: The Pixel-Based Adaptive Segmenter , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[34]  Slimane Larabi,et al.  Background Subtraction Algorithms with Post-processing: A Review , 2014, 2014 22nd International Conference on Pattern Recognition.

[35]  A. Lai,et al.  A fast and accurate scoreboard algorithm for estimating stationary backgrounds in an image sequence , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[36]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Soon Ki Jung,et al.  OR-PCA with MRF for Robust Foreground Detection in Highly Dynamic Backgrounds , 2014, ACCV.

[38]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Eduardo Ros,et al.  Background Subtraction Based on Color and Depth Using Active Sensors , 2013, Sensors.

[40]  Hongxun zhang,et al.  Fusing Color and Texture Features for Background Model , 2006, FSKD.

[41]  Qinghua Hu,et al.  Efficient Background Modeling Based on Sparse Representation and Outlier Iterative Removal , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[42]  Banshidhar Majhi,et al.  Intensity Range Based Background Subtraction for Effective Object Detection , 2013, IEEE Signal Processing Letters.

[43]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, CVPR 2004.

[44]  Lucia Maddalena,et al.  A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications , 2008, IEEE Transactions on Image Processing.

[45]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[46]  Thierry Bouwmans,et al.  Incremental and Multi-feature Tensor Subspace Learning Applied for Background Modeling and Subtraction , 2014, ICIAR.

[47]  Namrata Vaswani,et al.  Real-time Robust Principal Components' Pursuit , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[48]  Jean-Marc Odobez,et al.  Multi-Layer Background Subtraction Based on Color and Texture , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[50]  Sidney S. Fels,et al.  Evaluation of Background Subtraction Algorithms with Post-Processing , 2008, 2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance.

[51]  Qi Tian,et al.  Foreground object detection from videos containing complex background , 2003, MULTIMEDIA '03.

[52]  Thierry Bouwmans,et al.  Fuzzy integral for moving object detection , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[53]  Yaser Sheikh,et al.  Bayesian modeling of dynamic scenes for object detection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  David Suter,et al.  Background Subtraction Based on a Robust Consensus Method , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[55]  Wonjun Kim,et al.  Background Subtraction for Dynamic Texture Scenes Using Fuzzy Color Histograms , 2012, IEEE Signal Processing Letters.

[56]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[57]  Wei Zhang,et al.  Moving cast shadows detection based on ratio edge , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[58]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[59]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Fatih Murat Porikli,et al.  Changedetection.net: A new change detection benchmark dataset , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[61]  Sergio A. Velastin,et al.  Automatic congestion detection system for underground platforms , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[62]  Lucia Maddalena,et al.  A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection , 2010, Neural Computing and Applications.

[63]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[64]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[65]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..