Electrical transport in boron nanowires

Electrical transport is studied in crystalline boron nanowires, using Ni and Ti as the contact electrodes, in which Ni forms ohmic contact and Ti forms Schottky-barrier junction. Three-terminal electrical measurements demonstrate p-type semiconductor behavior with estimated carrier mobility of 10−3 cm2/V s. The conductivities in annealed devices are on the order of 10−2 (Ω cm)−1. At 4.2 K, the I-V shows low conductance at low bias voltage, and increases exponentially beyond a threshold electric field close to 105 V/cm. We attribute this behavior to electric-field-induced impact ionization.

[1]  Marcus Freitag,et al.  Controlled creation of a carbon nanotube diode by a scanned gate , 2001 .

[2]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[3]  H. Werheit,et al.  Metal—Insulator Transition in Boron Carbide , 1980 .

[4]  J. Robert,et al.  Preparation and study of the electrical properties of n-type boron and SiB alloys with a high boron concentration☆ , 1981 .

[5]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[6]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[7]  R. Schmechel,et al.  Structural defects of some icosahedral boron-rich solids and their correlation with the electronic properties , 2000 .

[8]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[9]  A. Quandt,et al.  Density-functional calculations for prototype metal-boron nanotubes , 2001 .

[10]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[11]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[12]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[13]  Cees Dekker,et al.  Transport through the interface between a semiconducting carbon nanotube and a metal electrode , 2002 .

[14]  Chun-Sing Lee,et al.  Boron nanowires synthesized by laser ablation at high temperature , 2003 .

[15]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[16]  Jae-Young Yu,et al.  Silicon nanowire devices , 2000 .

[17]  M. Yumura,et al.  Synthesis of crystalline boron nanowires by laser ablation. , 2002, Chemical communications.

[18]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[19]  Kenji Kawaguchi,et al.  Catalyst-free fabrication of single crystalline boron nanobelts by laser ablation , 2003 .

[20]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[21]  Yiying Wu,et al.  Superconducting MgB2 Nanowires , 2001 .

[22]  Jasprit Singh,et al.  Semiconductor Devices: An Introduction. , 1994 .

[23]  Yiqian Wang,et al.  Crystalline boron nanowires , 2003 .

[24]  J. M. Cowley,et al.  Crystalline boron nanowires. , 2002, Journal of the American Chemical Society.

[25]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[26]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[27]  Angel Rubio,et al.  New boron based nanostructured materials , 1999 .

[28]  N. Medvedeva,et al.  Quantum chemical simulation of the electronic structure and chemical bonding in (6,6), (11,11) and (20,0)-like metal-boron nanotubes , 2003 .

[29]  T. Lundström,et al.  Carbon in -rhombohedral boron , 1996 .

[30]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[31]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[32]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[33]  T. Lundström,et al.  On n-type β rhombohedral boron , 1981 .

[34]  Lihuan Sun,et al.  Well‐Aligned Boron Nanowire Arrays , 2001 .

[35]  Vlado I. Matkovich,et al.  Boron and Refractory Borides , 1977 .