Total Roman {3}-domination in Graphs

For a graph G = ( V , E ) with vertex set V = V ( G ) and edge set E = E ( G ) , a Roman { 3 } -dominating function (R { 3 } -DF) is a function f : V ( G ) → { 0 , 1 , 2 , 3 } having the property that ∑ u ∈ N G ( v ) f ( u ) ≥ 3 , if f ( v ) = 0 , and ∑ u ∈ N G ( v ) f ( u ) ≥ 2 , if f ( v ) = 1 for any vertex v ∈ V ( G ) . The weight of a Roman { 3 } -dominating function f is the sum f ( V ) = ∑ v ∈ V ( G ) f ( v ) and the minimum weight of a Roman { 3 } -dominating function on G is the Roman { 3 } -domination number of G, denoted by γ { R 3 } ( G ) . Let G be a graph with no isolated vertices. The total Roman { 3 } -dominating function on G is an R { 3 } -DF f on G with the additional property that every vertex v ∈ V with f ( v ) ≠ 0 has a neighbor w with f ( w ) ≠ 0 . The minimum weight of a total Roman { 3 } -dominating function on G, is called the total Roman { 3 } -domination number denoted by γ t { R 3 } ( G ) . We initiate the study of total Roman { 3 } -domination and show its relationship to other domination parameters. We present an upper bound on the total Roman { 3 } -domination number of a connected graph G in terms of the order of G and characterize the graphs attaining this bound. Finally, we investigate the complexity of total Roman { 3 } -domination for bipartite graphs.

[1]  Hong Gao,et al.  The Italian Domination Numbers of Generalized Petersen Graphs P(n,3) , 2019, Mathematics.

[2]  Zehui Shao,et al.  Double Roman domination in trees , 2018, Inf. Process. Lett..

[3]  I. Stewart Defend the Roman Empire , 1999 .

[4]  Charles S. Revelle,et al.  Defendens Imperium Romanum: A Classical Problem in Military Strategy , 2000, Am. Math. Mon..

[5]  Michael A. Henning,et al.  Italian domination in trees , 2017, Discret. Appl. Math..

[6]  Teresa W. Haynes,et al.  Roman {2}-domination , 2016, Discret. Appl. Math..

[7]  Y. Shang,et al.  Strong Equality of Perfect Roman and Weak Roman Domination in Trees , 2019, Mathematics.

[8]  Nader Jafari Rad,et al.  On the total domination critical graphs , 2006, Electron. Notes Discret. Math..

[9]  Doost Ali Mojdeh,et al.  On connected (γ, k)-critical graphs , 2010, Australas. J Comb..

[10]  Lutz Volkmann,et al.  Roman {3}-domination (double Italian domination) , 2020, Discret. Appl. Math..

[12]  Teresa W. Haynes,et al.  Double Roman domination , 2016, Discret. Appl. Math..