Water as a building block in solid-state acetonitrile-pyrogallol[4]arene assemblies: structural investigations.

Under various conditions, water molecules dramatically affect a number of solid-state C-alkylpyrogallol[4]arene assemblies. In the absence of water, hydrogen-bonded hexameric capsules are formed for the C-butyl, pentyl, hexyl, and heptyl pyrogallol[4]arenes. Introduction of water to acetonitrile solutions containing C-propyl-C-octylpyrogallol[4]arenes resulted in the formation of markedly different bilayer structures and the structural identification of two new dimer-type motifs.

[1]  J. Atwood,et al.  Cocrystallization and encapsulation of a fluorophore with hexameric pyrogallol[4]arene nanocapsules: structural and fluorescence studies. , 2006, Angewandte Chemie.

[2]  K. Holman,et al.  An achiral form of the hexameric resorcin[4]arene capsule sustained by hydrogen bonding with alcohols. , 2006, Chemical communications.

[3]  J. Atwood,et al.  Toward the isolation of functional organic nanotubes. , 2006, Angewandte Chemie.

[4]  J. Atwood,et al.  Fluorescent Guest Molecules Report Ordered Inner Phase of Host Capsules in Solution , 2005, Science.

[5]  Julius Rebek Simultane Verkapselung: Moleküle unter sich , 2005 .

[6]  J. Rebek Simultaneous encapsulation: molecules held at close range. , 2005, Angewandte Chemie.

[7]  Y. Cohen,et al.  Diffusion measurements for molecular capsules: pulse sequences effect on water signal decay. , 2005, Journal of the American Chemical Society.

[8]  J. Rebek,et al.  Hydrocarbon binding inside a hexameric pyrogallol[4]arene capsule. , 2005, Organic letters.

[9]  Yoram Cohen,et al.  Diffusions‐NMR‐Spektroskopie in der Supramolekularen und Kombinatorischen Chemie: ein alter Parameter – neue Erkenntnisse , 2005 .

[10]  Yoram Cohen,et al.  Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter--new insights. , 2005, Angewandte Chemie.

[11]  J. L. Atwood,et al.  Die innere Struktur des Kerns von Nanokapseln reagiert auf eine Kommunikation der Hüllen , 2004 .

[12]  Gareth W. V. Cave,et al.  Inner core structure responds to communication between nanocapsule walls. , 2004, Angewandte Chemie.

[13]  J. Rebek,et al.  Kinetics and thermodynamics of hexameric capsule formation. , 2004, Journal of the American Chemical Society.

[14]  Y. Cohen,et al.  Discrimination of guests encapsulation in large hexameric molecular capsules in solution: pyrogallol[4]arene versus resorcin[4]arene capsules. , 2003, Journal of the American Chemical Society.

[15]  Y. Cohen,et al.  Hexameric capsules of lipophilic pyrogallolarene and resorcinarene in solutions as probed by diffusion NMR: one hydroxyl makes the difference. , 2003, Organic letters.

[16]  J. Rebek,et al.  Assembly of resorcinarene capsules in wet solvents. , 2003, Journal of the American Chemical Society.

[17]  J. Atwood,et al.  Organization of the interior of molecular capsules by hydrogen bonding , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Rebek,et al.  Hydrogen-bonded capsules in polar, protic solvents. , 2001, Chemical communications.

[19]  J. Atwood,et al.  Hydrogen-bonded molecular capsules are stable in polar media. , 2001, Chemical communications.

[20]  J. Atwood,et al.  On the synthesis and structure of the very large spherical capsules derived from hexamers of pyrogallol[4]arenes , 2001 .

[21]  J. L. Reid,et al.  Encapsulation of two aromatics by a carcerand-like capsule of nanometre-scale dimensions , 2000 .

[22]  R. Fröhlich,et al.  Self‐Assembly of 2,8,14,20‐Tetraisobutyl‐5,11,17,23‐tetrahydroxyresorc[4]arene , 1999 .

[23]  J. Atwood,et al.  A chiral spherical molecular assembly held together by 60 hydrogen bonds , 1997, Nature.