Semi-empirical calculations of the nonlinear optical properties of polycyclic aromatic compounds

Abstract A systematic study of factors influencing nonlinear optical properties, in particular the second hyperpolarizability 〈γ〉, is conducted for a series of polycyclic aromatic hydrocarbons (PAHs). The HOMO-LUMO gap, polarizability 〈α〉, first hyperpolarizability 〈β〉, and second hyperpolarizability 〈γ〉 of polycyclic aromatic compounds are computed by using semi-empirical MNDO-FF calculation implemented in the MOPAC package. For linear polyacenes, the linear and nonlinear properties and total resonance energy are found to increase while the HOMO-LUMO gap and resonance energy per electron decrease as the number of six-membered rings increases. For nonlinear PAHs, the chain topology should be taken into account. An empirical formula is given to relate the computed 〈γ〉 and 〈α〉.

[1]  L. J. Schaad,et al.  Hueckel molecular orbital .pi.-resonance energies. Heterocycles containing divalent sulfur , 1973 .

[2]  L. J. Schaad,et al.  Hueckel molecular orbital .pi. resonance energies. Nonalternant hydrocarbons , 1971 .

[3]  L. Olmedo,et al.  π‐electron calculations of polarizabilities in conjugated systems , 1992 .

[4]  B. Kirtman,et al.  Ab initio longitudinal polarizabilities and hyperpolarizabilities of polydiacetylene and polybutatriene oligomers , 1989 .

[5]  J. Ducuing,et al.  Third‐order polarizabilities of long‐chain molecules , 1974 .

[6]  H. F. King,et al.  Ab initio calculations of polarizabilities and second hyperpolarizabilities in organic molecules with extended .pi.-electron conjugation , 1989 .

[7]  N. S. Ostlund,et al.  Self‐Consistent Perturbation Theory. I. Finite Perturbation Methods , 1968 .

[8]  Manthos G. Papadopoulos,et al.  Calculations of induced moments in large molecules. II. Polarizabilities and second hyperpolarizabilities of some polyenes , 1982 .

[9]  J. E. Bloor Finite field ab initio calculations of the dipole polarizabilities and first and second hyperpolarizabilities using multiple sets of polarization funct , 1991 .

[10]  K. Rustagi,et al.  Third-order optical polarizability of conjugated organic molecules☆ , 1974 .

[11]  R. Silbey,et al.  Variational–perturbational treatment for the polarizabilities of conjugated chains. I. Theory and linear‐polarizabilities results for polyenes , 1988 .

[12]  H. F. Hameka Calculation of linear and nonlinear electric susceptibilities of conjugated hydrocarbon chains , 1977 .

[13]  Paras N. Prasad,et al.  A systematic study of polarizability and microscopic third‐order optical nonlinearity in thiophene oligomers , 1988 .

[14]  J. Delhalle,et al.  Quantum chemistry and molecular engineering of oligomeric and polymeric materials for optoelectronics , 1991 .

[15]  P. Prasad,et al.  A coupled anharmonic oscillator model for optical nonlinearities of conjugated organic structures , 1989 .

[16]  James J. P. Stewart,et al.  Calculation of the nonlinear optical properties of molecules , 1990 .

[17]  R. Silbey,et al.  Variational-perturbational treatment for the polarizabilities of conjugated chains. II. Hyperpolarizabilities of polyenic chains , 1988 .

[18]  Michel Dupuis,et al.  Ab initio analytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: Applications to polyenes C4H6 to C22H24 , 1988 .