Convex Regularization for High-Dimensional Tensor Regression

In this paper we present a general convex optimization approach for solving high-dimensional tensor regression problems under low-dimensional structural assumptions. We consider using convex and \emph{weakly decomposable} regularizers assuming that the underlying tensor lies in an unknown low-dimensional subspace. Within our framework, we derive general risk bounds of the resulting estimate under fairly general dependence structure among covariates. Our framework leads to upper bounds in terms of two very simple quantities, the Gaussian width of a convex set in tensor space and the intrinsic dimension of the low-dimensional tensor subspace. These general bounds provide useful upper bounds on rates of convergence for a number of fundamental statistical models of interest including multi-response regression, vector auto-regressive models, low-rank tensor models and pairwise interaction models. Moreover, in many of these settings we prove that the resulting estimates are minimax optimal.

[1]  D. Slepian The one-sided barrier problem for Gaussian noise , 1962 .

[2]  F. T. Wright,et al.  A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .

[3]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[8]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[9]  Yuhong Yang,et al.  Information-theoretic determination of minimax rates of convergence , 1999 .

[10]  M. Ledoux The concentration of measure phenomenon , 2001 .

[11]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[12]  Stephen J. Wright,et al.  Simultaneous Variable Selection , 2005, Technometrics.

[13]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[14]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[15]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[16]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[17]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[18]  Baoxin Li,et al.  Tensor completion for on-board compression of hyperspectral images , 2010, 2010 IEEE International Conference on Image Processing.

[19]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[20]  Lars Schmidt-Thieme,et al.  Pairwise interaction tensor factorization for personalized tag recommendation , 2010, WSDM '10.

[21]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.

[22]  Martin J. Wainwright,et al.  Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.

[23]  Martin J. Wainwright,et al.  Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions , 2011, ICML.

[24]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[25]  Shay B. Cohen,et al.  Tensor Decomposition for Fast Parsing with Latent-Variable PCFGs , 2012, NIPS.

[26]  Martin J. Wainwright,et al.  Minimax-Optimal Rates For Sparse Additive Models Over Kernel Classes Via Convex Programming , 2010, J. Mach. Learn. Res..

[27]  Zenglin Xu,et al.  Exact and Stable Recovery of Pairwise Interaction Tensors , 2013, NIPS.

[28]  G. Michailidis,et al.  Regularized estimation in sparse high-dimensional time series models , 2013, 1311.4175.

[29]  Bo Huang,et al.  Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery , 2013, ICML.

[30]  Eric L. Miller,et al.  Tensor-Based Formulation and Nuclear Norm Regularization for Multienergy Computed Tomography , 2013, IEEE Transactions on Image Processing.

[31]  Trevor Hastie,et al.  Statistical Learning with Sparsity: The Lasso and Generalizations , 2015 .

[32]  Peter D. Hoff,et al.  MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA. , 2014, The annals of applied statistics.

[33]  Ming Yuan,et al.  On Tensor Completion via Nuclear Norm Minimization , 2014, Foundations of Computational Mathematics.