Spectral analysis of finite difference schemes for convection diffusion equation

Abstract The paper presents numerical analysis of finite difference schemes for solving the linear convection-diffusion equation using a full domain spectral analysis method illustrated in Sengupta et al. (2003) [7]. Different numerical schemes ranging from simple central and upwind difference schemes to high accuracy schemes like compact and combined compact difference schemes are analyzed for their accuracy. Optimal values of simulation parameters are proposed for the analyzed schemes with a view to obtain accurate solutions.

[1]  Stability analysis of finite difference schemes for the advection-diffusion equation , 1983 .

[2]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[3]  Stability analysis of six-point finite difference schemes for the constant coefficient convective-diffusion equation , 1992 .

[4]  Tapan K. Sengupta,et al.  High Accuracy Computing Methods: Fluid Flows and Wave Phenomena , 2013 .

[5]  Vaibhav Joshi,et al.  A positivity preserving variational method for multi-dimensional convection-diffusion-reaction equation , 2017, J. Comput. Phys..

[6]  H. Kreiss,et al.  Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .

[7]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations, Second Edition , 2004 .

[8]  P. Wesseling von Neumann stability conditions for the convection-diffusion eqation , 1996 .

[9]  Sergio Pirozzoli,et al.  Numerical Methods for High-Speed Flows , 2011 .

[10]  Sylvain Laizet,et al.  High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy , 2009, J. Comput. Phys..

[11]  T. K. Sengupta,et al.  Error dynamics: Beyond von Neumann analysis , 2007, J. Comput. Phys..

[12]  Tapan K. Sengupta,et al.  Global spectral analysis of multi-level time integration schemes: Numerical properties for error analysis , 2017, Appl. Math. Comput..

[13]  D. Gottlieb,et al.  The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes , 1993 .

[14]  Anastasios S. Lyrintzis,et al.  Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets , 2004, J. Sci. Comput..

[15]  Tapan K. Sengupta,et al.  UPWIND SCHEMES AND LARGE EDDY SIMULATION , 1999 .

[16]  Tapan K. Sengupta,et al.  DNS of Low Reynolds Number Aerodynamics in the Presence of Free Stream Turbulence , 2015 .

[17]  Tetuya Kawamura,et al.  Computation of high Reynolds number flow around a circular cylinder with surface roughness , 1984 .

[18]  Richard D. Sandberg,et al.  Direct Numerical Simulations for Flow and Noise Studies , 2013 .

[19]  Tapan K. Sengupta,et al.  Direct numerical simulation of 2D transonic flows around airfoils , 2013 .

[20]  Tapan K. Sengupta,et al.  Further improvement and analysis of CCD scheme: Dissipation discretization and de-aliasing properties , 2009, J. Comput. Phys..

[21]  Tetuya Kawamura,et al.  New higher-order upwind scheme for incompressible Navier-Stokes equations , 1985 .

[22]  Tapan K. Sengupta,et al.  A new combined stable and dispersion relation preserving compact scheme for non-periodic problems , 2009, J. Comput. Phys..

[23]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[24]  Feng He,et al.  A new family of high-order compact upwind difference schemes with good spectral resolution , 2007, J. Comput. Phys..

[25]  Y. Bhumkar,et al.  Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  P. Chu,et al.  A Three-Point Combined Compact Difference Scheme , 1998 .

[27]  Tapan K. Sengupta,et al.  Analysis of central and upwind compact schemes , 2003 .

[28]  David F. Griffiths,et al.  The stability of explicit Euler time‐integration for certain finite difference approximations of the multi‐dimensional advection–diffusion equation , 1984 .

[29]  Soshi Kawai,et al.  Compact Scheme with Filtering for Large-Eddy Simulation of Transitional Boundary Layer , 2008 .

[30]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[31]  Xiaolin Zhong,et al.  High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition , 1998 .

[32]  Tapan K. Sengupta,et al.  A new flux-vector splitting compact finite volume scheme , 2005 .

[33]  Tapan K. Sengupta,et al.  Error dynamics of diffusion equation: Effects of numerical diffusion and dispersive diffusion , 2014, J. Comput. Phys..

[34]  T. Sengupta,et al.  Precursor of transition to turbulence: spatiotemporal wave front. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Tapan K. Sengupta,et al.  Spurious waves in discrete computation of wave phenomena and flow problems , 2012, Appl. Math. Comput..