Stable Phase Retrieval in Infinite Dimensions

The problem of phase retrieval is to determine a signal $$f\in \mathcal {H}$$f∈H, with $$ \mathcal {H}$$H a Hilbert space, from intensity measurements $$|F(\omega )|$$|F(ω)|, where $$F(\omega ):=\langle f, \varphi _\omega \rangle $$F(ω):=⟨f,φω⟩ are measurements of f with respect to a measurement system $$(\varphi _\omega )_{\omega \in \Omega }\subset \mathcal {H}$$(φω)ω∈Ω⊂H. Although phase retrieval is always stable in the finite-dimensional setting whenever it is possible (i.e. injectivity implies stability for the inverse problem), the situation is drastically different if $$\mathcal {H}$$H is infinite-dimensional: in that case phase retrieval is never uniformly stable (Alaifari and Grohs in SIAM J Math Anal 49(3):1895–1911, 2017; Cahill et al. in Trans Am Math Soc Ser B 3(3):63–76, 2016); moreover, the stability deteriorates severely in the dimension of the problem (Cahill et al. 2016). On the other hand, all empirically observed instabilities are of a certain type: they occur whenever the function |F| of intensity measurements is concentrated on disjoint sets $$D_j\subset \Omega $$Dj⊂Ω, i.e. when $$F= \sum _{j=1}^k F_j$$F=∑j=1kFj where each $$F_j$$Fj is concentrated on $$D_j$$Dj (and $$k \ge 2$$k≥2). Motivated by these considerations, we propose a new paradigm for stable phase retrieval by considering the problem of reconstructing F up to a phase factor that is not global, but that can be different for each of the subsets $$D_j$$Dj, i.e. recovering F up to the equivalence $$\begin{aligned} F \sim \sum _{j=1}^k e^{\mathrm {i}\alpha _j} F_j. \end{aligned}$$F∼∑j=1keiαjFj.We present concrete applications (for example in audio processing) where this new notion of stability is natural and meaningful and show that in this setting stable phase retrieval can actually be achieved, for instance, if the measurement system is a Gabor frame or a frame of Cauchy wavelets.

[1]  M. V. Klibanov,et al.  Inverse scattering problems and restoration of a function from the modulus of its Fourier transform , 1986 .

[2]  Philipp Grohs,et al.  Gabor phase retrieval is severely ill-posed , 2018 .

[3]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[4]  P. Jaming,et al.  Uniqueness results in an extension of Pauli's phase retrieval problem , 2014 .

[5]  J. L. Flanagan,et al.  PHASE VOCODER , 2008 .

[6]  J. Rodenburg Ptychography and Related Diffractive Imaging Methods , 2008 .

[7]  Philipp Grohs,et al.  Phase Retrieval In The General Setting Of Continuous Frames For Banach Spaces , 2016, SIAM J. Math. Anal..

[8]  Tuomas Virtanen,et al.  Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuity and Sparseness Criteria , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[9]  Denis S. Grebenkov,et al.  Geometrical Structure of Laplacian Eigenfunctions , 2012, SIAM Rev..

[10]  John H. L. Hansen,et al.  Discrete-Time Processing of Speech Signals , 1993 .

[11]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[12]  E. J. Akutowicz,et al.  On the determination of the phase of a Fourier integral. II , 1957 .

[13]  P. Grohs,et al.  Stable Gabor Phase Retrieval and Spectral Clustering , 2017, Communications on Pure and Applied Mathematics.

[14]  Jean Laroche,et al.  Improved phase vocoder time-scale modification of audio , 1999, IEEE Trans. Speech Audio Process..

[15]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[16]  G. Thakur Reconstruction of Bandlimited Functions from Unsigned Samples , 2010, 1007.0198.

[17]  Ingrid Daubechies,et al.  Reconstructing Real-Valued Functions from Unsigned Coefficients with Respect to Wavelet and Other Frames , 2016, 1601.07579.

[18]  N. Hurt Phase Retrieval and Zero Crossings: Mathematical Methods in Image Reconstruction , 1989 .

[19]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[20]  Y. Katznelson An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .

[21]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[22]  Frank Wannemaker Phase Retrieval And Zero Crossings Mathematical Methods In Image Reconstruction , 2016 .

[23]  Irène Waldspurger Wavelet transform modulus : phase retrieval and scattering , 2017 .

[24]  Cheng Cheng,et al.  Phase Retrieval of Real-Valued Signals in a Shift-Invariant Space , 2016, Applied and Computational Harmonic Analysis.

[25]  Gerard Ascensi,et al.  Model Space Results for the Gabor and Wavelet Transforms , 2008, IEEE Transactions on Information Theory.

[26]  Baris Bozkurt,et al.  On the use of phase information for speech recognition , 2005, 2005 13th European Signal Processing Conference.

[27]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[28]  Hwai-chiuan Wang Real hardy spaces of an annulus , 1983, Bulletin of the Australian Mathematical Society.

[29]  J. Rodenburg,et al.  Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.

[30]  Holger Boche,et al.  Phaseless Signal Recovery in Infinite Dimensional Spaces Using Structured Modulations , 2013, ArXiv.

[31]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[32]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[33]  Dongmian Zou,et al.  On Lipschitz Analysis and Lipschitz Synthesis for the Phase Retrieval Problem , 2015, 1506.02092.

[34]  Holger Boche,et al.  Phase Retrieval via Structured Modulations in Paley-Wiener Spaces , 2013, ArXiv.

[35]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[36]  Stéphane Mallat,et al.  Group Invariant Scattering , 2011, ArXiv.

[37]  E. Carlen Some integral identities and inequalities for entire functions and their application to the coherent state transform , 1991 .

[38]  Alexander Stanoyevitch,et al.  Equivalence of analytic and Sobolev Poincaré inequalities for planar domains , 1997 .

[39]  Peter G. Casazza,et al.  Phase retrieval in infinite-dimensional Hilbert spaces , 2016, 1601.06411.

[40]  Bernhard G. Bodmann,et al.  Stable phase retrieval with low-redundancy frames , 2013, Adv. Comput. Math..

[41]  H. Gottlieb,et al.  Eigenvalues of the Laplacian with Neumann boundary conditions , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[42]  Stéphane Mallat,et al.  Audio Texture Synthesis with Scattering Moments , 2013, ArXiv.

[43]  R. Horstmeyer,et al.  Wide-field, high-resolution Fourier ptychographic microscopy , 2013, Nature Photonics.

[44]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[45]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[46]  Rainer Hempel,et al.  On the lowest eigenvalue of the Laplacian with Neumann boundary condition at a small obstacle , 2006 .

[47]  S. Marchesini,et al.  X-ray image reconstruction from a diffraction pattern alone , 2003, physics/0306174.