On the Synergistic Use of SAR Constellations’ Data Exploitation for Earth Science and Natural Hazard Response

Several current and expected future SAR satellites missions (e.g., TanDEM-X (TDX)/PAZ, COSMO-SkyMed (CSK), and Sentinel-1A/B) are designed as constellations of SAR sensors. Relative to single satellite systems, such constellations can provide greater spatial coverage and temporal sampling, thereby enabling better control on interferometric decorrelation and lower latency data access. These improvements lead to more effective near real-time disaster monitoring, assessment and response, and a greater ability to constrain dynamically changing physical processes. Using observations from the CSK system, we highlight examples of the potential for such imaging capabilities to enable advances in Earth science and natural hazards response.

[1]  Paul Lundgren,et al.  The collapse of Bárðarbunga Caldera, Iceland , 2015 .

[2]  Freysteinn Sigmundsson,et al.  Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland , 2014, Nature.

[3]  M. Simons,et al.  Modeling the elastic transmission of tidal stresses to great distances inland in channelized ice streams , 2014 .

[4]  T. Thordarson,et al.  Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes , 2014, Bulletin of Volcanology.

[5]  Eric J. Fielding,et al.  COSMO-SkyMed Spotlight Interferometry Over Rural Areas: The Slumgullion Landslide in Colorado, USA , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  Malcolm Davidson,et al.  Sentinel-1 System capabilities and applications , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[7]  Henriette Sudhaus,et al.  Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcán de Colima, Mexico , 2014, Front. Earth Sci..

[8]  Elvira Calio,et al.  COSMO-SkyMed: operational results and performance , 2014 .

[9]  Fabiana Calò,et al.  How second generation SAR systems are impacting the analysis of ground deformation , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[10]  M. Grae Worster,et al.  Elastic dynamics and tidal migration of grounding lines modify subglacial lubrication and melting , 2013 .

[11]  Andreas Kern,et al.  The future of X-band SAR: TerraSAR-X next generation and WorldSAR constellation , 2013, Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[12]  Eric Rignot,et al.  Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher‐order model , 2013 .

[13]  Michael P. Poland,et al.  Evolution of dike opening during the March 2011 Kamoamoa fissure eruption, Kīlauea Volcano, Hawai`i , 2013 .

[14]  Antonio Pepe,et al.  From Previous C-Band to New X-Band SAR Systems: Assessment of the DInSAR Mapping Improvement for Deformation Time-Series Retrieval in Urban Areas , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Marie-Pierre Doin,et al.  New Radar Interferometric Time Series Analysis Toolbox Released , 2013 .

[16]  S. Owen,et al.  Rapid and Reliable Damage Proxy Map from InSAR Coherence , 2012 .

[17]  Kelly M. Brunt,et al.  Analysis of ice plains of the Filchner–Ronne Ice Shelf, Antarctica, using ICESat laser altimetry , 2011, Journal of Glaciology.

[18]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[19]  Eric Rignot,et al.  Spatial patterns of basal drag inferred using control methods from a full‐Stokes and simpler models for Pine Island Glacier, West Antarctica , 2010 .

[20]  J. Bamber,et al.  Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet , 2009, Science.

[21]  G. Gudmundsson,et al.  Fortnightly variations in the flow velocity of Rutford Ice Stream, West Antarctica , 2006, Nature.

[22]  Zhong Lu,et al.  Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations , 2006 .

[23]  Ian Joughin,et al.  Basal shear stress of the Ross ice streams from control method inversions , 2004 .

[24]  Gianfranco Fornaro,et al.  The use of IFSAR and classical geodetic techniques for caldera unrest episodes: application to the Campi Flegrei uplift event of 2000 , 2004 .

[25]  I. Joughin,et al.  Timing of Recent Accelerations of Pine Island Glacier, Antarctica , 2003 .

[26]  Bamber,et al.  Widespread complex flow in the interior of the antarctic ice sheet , 2000, Science.

[27]  Roberts,et al.  Magma intrusion beneath long valley caldera confirmed by temporal changes in gravity , 1999, Science.

[28]  D. Macayeal The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods , 1992 .

[29]  Barclay Kamb,et al.  Glacier surge mechanism based on linked cavity configuration of the basal water conduit system , 1987 .

[30]  J. Weertman On the Sliding of Glaciers , 1957, Journal of Glaciology.

[31]  Sridhar Anandakrishnan,et al.  Ice-Shelf Tidal Flexure and Subglacial Pressure Variations , 2013 .

[32]  Tony Greicius NASA Damage Map Helps in Typhoon Disaster Response , 2013 .

[33]  Betlem Rosich,et al.  Sentinel-1 mission operations concept , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[34]  C. A.,et al.  SLIDING WITH CAVITY FORMATION , 2010 .

[35]  John W. Holt,et al.  Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using satellite and airborne data , 2009, Journal of Glaciology.

[36]  P. Rosen,et al.  Interferometric Synthetic Aperture Radar Geodesy , 2007 .

[37]  Erik Lintz Christensen,et al.  Tidal bending of glaciers: a linear viscoelastic approach , 2003, Annals of Glaciology.

[38]  Douglas R. Macayeal,et al.  A tutorial on the use of control methods in ice-sheet modeling , 1993, Journal of Glaciology.