Observation of quantum interference as a function of Berry's phase in a complex Hadamard optical network.

Emerging models of quantum computation driven by multiphoton quantum interference, while not universal, may offer an exponential advantage over classical computers for certain problems. Implementing these circuits via geometric phase gates could mitigate requirements for error correction to achieve fault tolerance while retaining their relative physical simplicity. We report an experiment in which a geometric phase is embedded in an optical network with no closed loops, enabling quantum interference between two photons as a function of the phase.

[1]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[2]  Timothy C. Ralph,et al.  Error tolerance of the boson-sampling model for linear optics quantum computing , 2011, 1111.2426.

[3]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[4]  S. Tamate,et al.  Nonlinear behavior of geometric phases induced by photon pairs , 2011, 1105.1855.

[5]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[6]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[7]  P Geltenbort,et al.  Experimental demonstration of the stability of Berry's phase for a spin-1/2 particle. , 2008, Physical review letters.

[8]  Martienssen,et al.  Geometric phases in two-photon interference experiments. , 1995, Physical Review A. Atomic, Molecular, and Optical Physics.

[9]  Paolo Zanardi,et al.  Non-Abelian Berry connections for quantum computation , 1999 .

[10]  Wojciech Tadej,et al.  A Concise Guide to Complex Hadamard Matrices , 2006, Open Syst. Inf. Dyn..

[11]  C. M. Natarajan,et al.  Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. , 2011, Physical review letters.

[12]  Anthony Laing,et al.  High-fidelity operation of quantum photonic circuits , 2010, 1004.0326.

[13]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[14]  A. Politi,et al.  Multimode quantum interference of photons in multiport integrated devices , 2010, Nature communications.

[15]  Berry phase in multiphoton experiments , 1989 .

[16]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[17]  Spin-1/2 geometric phase driven by decohering quantum fields. , 2003, Physical review letters.

[18]  Paolo Zanardi,et al.  Robustness of non-Abelian holonomic quantum gates against parametric noise , 2004 .

[19]  Measurement of geometric phase for mixed states using single photon interferometry. , 2004, quant-ph/0412216.

[20]  W. Marsden I and J , 2012 .

[21]  Kwiat,et al.  Observation of a nonclassical Berry's phase for the photon. , 1991, Physical review letters.

[22]  Andrew G. Glen,et al.  APPL , 2001 .

[23]  Tomita,et al.  Observation of Berry's topological phase by use of an optical fiber. , 1986, Physical review letters.

[24]  Lauber,et al.  Geometric phases and hidden symmetries in simple resonators. , 1994, Physical review letters.

[25]  R. J. Schoelkopf,et al.  Observation of Berry's Phase in a Solid-State Qubit , 2007, Science.

[26]  Geometric phase in open systems. , 2003, Physical review letters.

[27]  Teich,et al.  Two-photon interference in a Mach-Zehnder interferometer. , 1990, Physical review letters.

[28]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  Off-diagonal geometric phases. , 1999, Physical review letters.

[30]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[31]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[32]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[33]  Weinfurter,et al.  Measurement of Berry's phase for noncyclic evolution. , 1990, Physical review letters.

[34]  Gabriele De Chiara,et al.  Berry phase for a spin 1/2 particle in a classical fluctuating field. , 2003, Physical review letters.

[35]  Samuel,et al.  General setting for Berry's phase. , 1988, Physical review letters.

[36]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[37]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[38]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[39]  Jonathan A. Jones,et al.  Geometric quantum computation using nuclear magnetic resonance , 2000, Nature.

[40]  Roberto Morandotti,et al.  Quantum and classical correlations in waveguide lattices. , 2008, Physical review letters.

[41]  I Fuentes-Guridi,et al.  Holonomic quantum computation in the presence of decoherence. , 2005, Physical review letters.

[42]  T. F. Jordan Berry phases for partial cycles. , 1988, Physical review. A, General physics.

[43]  L J Wang,et al.  Measurement of the Pancharatnam phase for a light beam. , 1988, Optics letters.

[44]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[45]  Off-diagonal geometric phase in a neutron interferometer experiment. , 2001, Physical review letters.

[46]  Wu,et al.  Observable effects of the quantum adiabatic phase for noncyclic evolution. , 1988, Physical review. B, Condensed matter.

[47]  Entanglement gauge and the non-Abelian geometric phase with two photonic qubits , 2002, quant-ph/0209098.