Study on C H amination reactions catalyzed by iron porphyrin nitrene complexs with different nitrogen sources

[1]  Cunyuan Zhao,et al.  Mechanistic investigation of dirhodium-catalyzed intramolecular allylic C-H amination versus alkene aziridination. , 2014, The Journal of organic chemistry.

[2]  B. Yan,et al.  Theoretical studies of iron(III)-catalyzed intramolecular C-H amination of azides. , 2013, Dalton transactions.

[3]  D. Musaev,et al.  A diruthenium catalyst for selective, intramolecular allylic C-H amination: reaction development and mechanistic insight gained through experiment and theory. , 2011, Journal of the American Chemical Society.

[4]  C. Che,et al.  Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts. , 2011, Chemical Society reviews.

[5]  Wojciech I Dzik,et al.  'Carbene radicals' in Co(II)(por)-catalyzed olefin cyclopropanation. , 2010, Journal of the American Chemical Society.

[6]  P. Dauban,et al.  Catalytic C-H amination: recent progress and future directions. , 2009, Chemical communications.

[7]  Christine G. Espino,et al.  A mechanistic analysis of the Rh-catalyzed intramolecular C–H amination reaction , 2009 .

[8]  S. Blakey,et al.  Enantioselective C-H amination using cationic ruthenium(II)-pybox catalysts. , 2008, Angewandte Chemie.

[9]  J. Du Bois,et al.  A chiral rhodium carboxamidate catalyst for enantioselective C-H amination. , 2008, Journal of the American Chemical Society.

[10]  S. Shaik,et al.  NR transfer reactivity of azo-compound I of P450. How does the nitrogen substituent tune the reactivity of the species toward C-H and C=C activation? , 2007, The journal of physical chemistry. B.

[11]  T. H. Warren,et al.  Transient terminal Cu-nitrene intermediates from discrete dicopper nitrenes. , 2006, Journal of the American Chemical Society.

[12]  C. Che,et al.  Oxidation chemistry of poly(ethylene glycol)-supported carbonylruthenium(II) and dioxoruthenium(VI) meso-tetrakis(pentafluorophenyl)porphyrin. , 2006, Chemistry.

[13]  C. Che,et al.  Imido transfer from bis(imido)ruthenium(VI) porphyrins to hydrocarbons: effect of imido substituents, C-H bond dissociation energies, and Ru(VI/V) reduction potentials. , 2005, Journal of the American Chemical Society.

[14]  C. Che,et al.  Enantioselective intramolecular amidation of sulfamate esters catalyzed by chiral manganese(III) Schiff-base complexes , 2005 .

[15]  P. Müller,et al.  The enantioselectivity and the stereochemical course of copper-catalyzed intramolecular CH insertions of phenyliodonium ylides , 2002 .

[16]  T. Katsuki,et al.  Mn(salen)-catalyzed sulfimidation: what are the real active species in sulfimidation? , 2001 .

[17]  C. Che,et al.  Aziridination of alkenes and amidation of alkanes by bis(tosylimido)ruthenium(VI) porphyrins. A mechanistic study , 1999 .

[18]  Michele Parrinello,et al.  Equilibrium Geometries and Electronic Structure of Iron−Porphyrin Complexes: A Density Functional Study , 1997 .

[19]  D. Mansuy,et al.  Formation of an iron(III)-porphyrin complex with a nitrene moiety inserted into an iron-nitrogen bond during alkene aziridination by (tosylimidoiodo)benzene catalyzed by iron(III) porphyrins , 1986 .

[20]  P. Gans,et al.  Iron porphyrin-nitrene complexes: preparation from 1,1-dialkylhydrazines. Electronic structure from NMR, Moessbauer, and magnetic susceptibility studies and crystal structure of the [tetrakis(p-chlorophenyl)porphyrinato][(2,2,6,6-tetramethyl-1-piperidyl)nitrene]iron complex , 1984 .

[21]  J. Ziller,et al.  Multiple metal-carbon bonds. 34. Why terminal alkynes cannot be metathesized. Preparation and crystal structure of a deprotonated tungstacyclobutadiene complex, W(.eta.5-C5H5)[C3(CMe3)2]Cl , 1983 .

[22]  J. Groves,et al.  Aliphatic hydroxylation catalyzed by iron porphyrin complexes , 1983 .

[23]  R. Haushalter,et al.  High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450 , 1981 .

[24]  E. Fleischer,et al.  Thermodynamic and kinetic properties of an iron-porphyrin system. , 1971, Journal of the American Chemical Society.

[25]  K. Chan,et al.  Electronic Effects of Ligands on the Cobalt(II)–Porphyrin‐Catalyzed Direct C–H Arylation of Benzene , 2012 .

[26]  N. Casati,et al.  Insights into the Mechanism of the Ruthenium–Porphyrin-Catalysed Allylic Amination of Olefins by Aryl Azides , 2012 .

[27]  C. Che,et al.  Asymmetric amidation of saturated C–H bonds catalysed by chiral ruthenium and manganese porphyrins , 1999 .

[28]  C. Che,et al.  SYNTHESIS, CHARACTERISATION AND REACTIVITY OF NOVEL BIS(TOSYL)IMIDORUTHENIUM(VI) PORPHYRIN COMPLEXES; X-RAY CRYSTAL STRUCTURE OF A TOSYLAMIDORUTHENIUM (IV) PORPHYRIN , 1997 .

[29]  D. Mansuy,et al.  Iron-porphyrin-nitrene complexes: preparation, properties, and crystal structure of porphyrin-iron(III) complexes with a tosylnitrene inserted into an iron-nitrogen bond , 1988 .