Asymmetry of magnetosheath flows and magnetopause shape during low Alfvén Mach number solar wind

[1] Previous works have emphasized the significant influence of the solar wind Alfven Mach number (MA) on magnetospheric dynamics. Here we report statistical, observational results that pertain to changes in the magnetosheath flow distribution and magnetopause shape as a function of solar wind MA and interplanetary magnetic field (IMF) clock angle orientation. We use all Cluster 1 data in the magnetosheath during the period 2001–2010, using an appropriate spatial superposition procedure, to produce magnetosheath flow distributions as a function of location in the magnetosheath relative to the IMF and other parameters. The results demonstrate that enhanced flows in the magnetosheath are expected at locations quasi-perpendicular to the IMF direction in the plane perpendicular to the Sun-Earth line; in other words, for the special case of a northward IMF, enhanced flows are observed on the dawn and dusk flanks of the magnetosphere, while much lower flows are observed above the poles. The largest flows are adjacent to the magnetopause. Using appropriate magnetopause crossing lists (for both high and low MA), we also investigate the changes in magnetopause shape as a function of solar wind MA and IMF orientation. Comparing observed magnetopause crossings with predicted positions from an axisymmetric semi-empirical model, we statistically show that the magnetopause is generally circular during high MA, while is it elongated (albeit with moderate statistical significance) along the direction of the IMF during low MA. These findings are consistent with enhanced magnetic forces that prevail in the magnetosheath during low MA. The component of the magnetic forces parallel to the magnetopause produces the enhanced flows along and adjacent to the magnetopause, while the component normal to the magnetopause exerts an asymmetric pressure on the magnetopause that deforms it into an elongated shape.

[1]  J. Richardson,et al.  A dawn‐dusk density asymmetry in Earth's magnetosheath , 2001 .

[2]  C. Russell,et al.  Magnetopause shape determinations from measured position and estimated flaring angle , 1999 .

[3]  I. Papamastorakis,et al.  First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment , 2001 .

[4]  C. Russell,et al.  The influence of the interplanetary magnetic field and thermal pressure on the position and shape of the magnetopause , 1981 .

[5]  L. Rosenqvist,et al.  An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection , 2007 .

[6]  M. Fujimoto,et al.  Anomalous flow deflection at earth's low-Alfvén-Mach-Number bow shock. , 2008, Physical review letters.

[7]  G. Siscoe Aspects of global coherence of magnetospheric behavior , 2011 .

[8]  Maria M. Kuznetsova,et al.  Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere , 2009 .

[9]  C. Russell,et al.  Dependence of flux transfer events on solar wind conditions from 3 years of cluster observations , 2006 .

[10]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[11]  Tamas I. Gombosi,et al.  Ionospheric control of the magnetosphere: conductance , 2004 .

[12]  B. Abraham-Shrauner,et al.  Theoretical proton velocity distributions in the flow around the magnetosphere , 1966 .

[13]  Three‐dimensional artificial neural network model of the dayside magnetopause , 2000, 1302.1704.

[14]  M. Kivelson,et al.  Anomalous aspects of magnetosheath flow and of the shape and oscillations of the magnetopause during an interval of strongly northward interplanetary magnetic field , 1993 .

[15]  Hideaki Kawano,et al.  Magnetopause location under extreme solar wind conditions , 1998 .

[16]  C. Farrugia,et al.  On accelerated magnetosheath flows under northward IMF , 2011 .

[17]  S. Schwartz,et al.  Tracing solar wind plasma entry into the magnetosphere using ion‐to‐electron temperature ratio , 2009 .

[18]  L. Přech,et al.  Magnetosheath Investigations: Interball Contribution to the Topic , 2005 .

[19]  O. D. Constantinescu,et al.  Spatial distribution of rolled up Kelvin-Helmholtz vortices at Earth's dayside and flank magnetopause , 2012 .

[20]  A. Summers,et al.  Hydromagnetic flow around the magnetosphere , 1966 .

[21]  J. Richardson,et al.  Observations of the radial magnetosheath profile and a comparison with gasdynamic model predictions , 2000 .

[22]  G. Erdős,et al.  Magnetosheath - Interplanetary medium reference frame: Application for a statistical study of mirror type waves in the terrestrial plasma environment , 2006 .

[23]  M. Dunlop,et al.  Geometry of the high‐latitude magnetopause as observed by Cluster , 2007 .

[24]  J. Slavin,et al.  Major flattening of the distant geomagnetic tail , 1986 .

[25]  G. Paschmann,et al.  The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations , 1994 .

[26]  G. Paschmann,et al.  Low‐latitude dayside magnetopause and boundary layer for high magnetic shear: 2. Occurrence of magnetic reconnection , 1996 .

[27]  Joseph E. Borovsky The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles: THEORY OF SOLAR WIND COUPLING , 2008 .

[28]  M. W. Dunlop,et al.  The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results , 2001 .

[29]  Lou‐Chuang Lee,et al.  Energy coupling function and solar wind‐magnetosphere dynamo , 1979 .

[30]  Joseph E. Borovsky,et al.  Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections , 2008 .

[31]  Mario H. Acuna,et al.  THE CLUSTER MAGNETIC FIELD INVESTIGATION , 1997 .

[32]  D. Hunten,et al.  Depletion of solar wind plasma near a planetary boundary , 1976 .

[33]  Syun-Ichi Akasofu,et al.  A study of geomagnetic storms , 1978 .

[34]  M. Dunlop,et al.  Cluster survey of the high-altitude cusp properties: a three-year statistical study , 2004 .

[35]  S. Schwartz,et al.  Dawn-dusk asymmetries and sub-Alfvenic flow in the high and low latitude magnetosheath , 2005 .

[36]  Michelle F. Thomsen,et al.  Necessary conditions for geosynchronous magnetopause crossings , 2005 .

[37]  G. Paschmann,et al.  The Magnetosheath Region Adjacent to the Dayside Magnetopause , 2013 .

[38]  M. Dunlop,et al.  Cluster observations of the exterior cusp and its surrounding boundaries under northward IMF , 2002 .

[39]  L. Burlaga,et al.  Magnetic field structure of interplanetary magnetic clouds at 1 AU , 1990 .

[40]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[41]  C. Russell,et al.  Near-Earth magnetotail shape and size as determined from the magnetopause flaring angle , 1996 .

[42]  J. Richardson,et al.  The dawn-dusk asymmetry of the magnetosheath: INTERBALL-1 observations , 2003 .

[43]  Vincent Génot,et al.  Mirror structures above and below the linear instability threshold: Cluster observations, fluid model and hybrid simulations , 2009 .

[44]  T. I. Gombosia,et al.  Multiscale MHD simulation of a coronal mass ejection and its interaction with the magnetosphere – ionosphere system , 1994 .

[45]  C. Farrugia,et al.  Accelerated magnetosheath flows caused by IMF draping: Dependence on latitude , 2012 .

[46]  V. Vasyliūnas Comparative magnetospheres: lessons for Earth , 2004 .

[47]  S. A. Boardsen,et al.  An empirical model of the high‐latitude magnetopause , 2000 .

[48]  V. M. Vasyli Comparative magnetospheres: lessons for Earth , 2004 .

[49]  P. Song,et al.  The location and shape of the magnetopause , 2002 .

[50]  M. Liemohn,et al.  Pressure anisotropy in global magnetospheric simulations: A magnetohydrodynamics model , 2012 .

[51]  C. Russell,et al.  The location of the high‐latitude polar cusp and the shape of the surrounding magnetopause , 1997 .

[52]  V. Génot,et al.  Timing mirror structures observed by Cluster with a magnetosheath flow model , 2011 .

[53]  J. Lyon,et al.  The role of the bow shock in solar wind-magnetosphere coupling , 2011 .

[54]  M. Dunlop,et al.  The high‐altitude cusps: HEOS 2 , 2000 .

[55]  R. Bruntz,et al.  Role of magnetosheath force balance in regulating the dayside reconnection potential , 2010 .

[56]  F. Mozer,et al.  A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field , 1974 .

[57]  E. W. Pogue,et al.  Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect? , 2007 .

[58]  T. Phan,et al.  Low‐latitude dayside magnetopause and boundary layer for high magnetic shear: 1. Structure and motion , 1996 .

[59]  J. Binsack,et al.  Explorer 33 and 35 plasma observations of magnetosheath flow , 1972 .

[60]  Charles J. Farrugia,et al.  Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud , 1995 .

[61]  A. Dmitriev,et al.  Dawn‐dusk asymmetry of geosynchronous magnetopause crossings , 2004 .

[62]  David G. Sibeck,et al.  Solar wind control of the magnetopause shape, location, and motion , 1991 .

[63]  Christopher T. Russell,et al.  A new functional form to study the solar wind control of the magnetopause size and shape , 1997 .

[64]  S. Schwartz,et al.  Rotation of the magnetic field in Earth's magnetosheath by bulk magnetosheath plasma flow , 2006 .

[65]  T. Mukai,et al.  Geotail observations of magnetosheath flow near the magnetopause, using wind as a solar wind monitor , 1997 .