Mapping and Assessment of Geological Lineaments with the Contribution of Earth Observation Data: A Case Study of the Zaer Granite Massif, Western Moroccan Meseta

The Zaer granitic massif is one of the most important Variscan granitoids in the Central Zone of the Western Moroccan Meseta. It is characterized by a deformation which is manifested by a network of fractures of different scales. Thanks to the technology currently available, many geological studies rely heavily on the mapping of geological lineaments, especially in structural geology. This has become more reliable with access to earth observation data using optical and radar sensors as well as the various remote sensing techniques. Therefore, the objective of this work is to determine the potential of Landsat 8, ASTER, Sentinel 2 and radar Sentinel 1 datasets using the automatic method to extract lineaments. Furthermore, this work focuses on quantitative lineament analysis to determine lineament trends and subsequently compare them with global and regional tectonic movement trends. The lineaments obtained through different satellite images were validated by including the shaded relief maps, the slope map, the correlation with the pre-existing faults in the geological maps as well as the field investigation. Comparison of these results indicates that Sentinel 1 imagery provides a better correlation between automated extraction lineaments and major fault zones. Thus, Sentinel 1 data is more effective in mapping geological lineaments. The final lineament map obtained from the VH and VV polarizations shows two major fault systems, mainly oriented NE-SW and NW-SE to NNW-SSE.

[1]  S. Khemiri,et al.  Lineament characterization for groundwater targeting using satellite images and field data , 2022, Earth Science Informatics.

[2]  H. Harbi,et al.  Airborne geophysics and remote sensing of an Nimas-Khadra area, southern Arabian shield: New insights into structural framework and mineral occurrences , 2022, Advances in Space Research.

[3]  A. Shebl,et al.  Reappraisal of DEMs, Radar and optical datasets in lineaments extraction with emphasis on the spatial context , 2021 .

[4]  Zakaria Adiri,et al.  Application of optical and radar satellite images for mapping tectonic lineaments in kerdous inlier of the Anti-Atlas belt, Morocco , 2021 .

[5]  J. Kearse,et al.  On‐Fault Geological Fingerprint of Earthquake Rupture Direction , 2020, Journal of Geophysical Research: Solid Earth.

[6]  Manjula Ranagalage,et al.  Sentinel-2 Data for Land Cover/Use Mapping: A Review , 2020, Remote. Sens..

[7]  Christos Vasilakos,et al.  Machine Learning Classification Ensemble of Multitemporal Sentinel-2 Images: The Case of a Mixed Mediterranean Ecosystem , 2020, Remote. Sens..

[8]  Michael Abrams,et al.  ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD) , 2020, Remote. Sens..

[9]  Satoshi Tsuchida,et al.  Lunar Calibration for ASTER VNIR and TIR with Observations of the Moon in 2003 and 2017 , 2019, Remote. Sens..

[10]  Biswajeet Pradhan,et al.  Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and WorldView-3 Multispectral Satellite Imagery for Prospecting Copper-Gold Mineralization in the Northeastern Inglefield Mobile Belt (IMB), Northwest Greenland , 2019, Remote. Sens..

[11]  Y. Kaneko,et al.  Curved slickenlines preserve direction of rupture propagation , 2019, Geology.

[12]  Ferran Gascon,et al.  Sentinel-2 Global Surface Reflectance Level-2a Product Generated with Sen2Cor , 2019, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Federico Filipponi,et al.  Sentinel-1 GRD Preprocessing Workflow , 2019, Proceedings.

[14]  Zhe Zhu,et al.  Current status of Landsat program, science, and applications , 2019, Remote Sensing of Environment.

[15]  L. N. Sharma,et al.  Image Processing Techniques Applied to Satellite Data for Extracting Lineaments Using PCI Geomatica and Their Morphotectonic Interpretation in the Parts of Northwestern Himalayan Frontal Thrust , 2019, Journal of the Indian Society of Remote Sensing.

[16]  Xi Chen,et al.  Comparison of Multi-Resolution Optical Landsat-8, Sentinel-2 and Radar Sentinel-1 Data for Automatic Lineament Extraction: A Case Study of Alichur Area, SE Pamir , 2019, Remote. Sens..

[17]  Ana C. Teodoro,et al.  Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Belém, Eastern Brazilian Amazon , 2019, Sensors.

[18]  M. El Janati Application of remotely sensed ASTER data in detecting alteration hosting Cu, Ag and Au bearing mineralized zones in Taghdout area, Central Anti-Atlas of Morocco , 2019, Journal of African Earth Sciences.

[19]  Nadia Hamdani,et al.  Fracture Network Mapping Using Landsat 8 OLI Data and Linkage with the Karst System: a Case Study of the Moroccan Central Middle Atlas , 2019, Remote Sensing in Earth Systems Sciences.

[20]  Maarit Middleton,et al.  Integrated Object-Based Image Analysis for semi-automated geological lineament detection in southwest England , 2019, Comput. Geosci..

[21]  Cong Xu,et al.  Effects of pre-processing methods on Landsat OLI-8 land cover classification using OBIA and random forests classifier , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[22]  E. Bedini Application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral imagery to mineral and lithologic mapping in southern West Greenland , 2018, Journal of Hyperspectral Remote Sensing.

[23]  Q. Cheng,et al.  Lithological discrimination using ASTER and Sentinel-2A in the Shibanjing ophiolite complex of Beishan orogenic in Inner Mongolia, China , 2018, Advances in Space Research.

[24]  Huaqing Chen,et al.  Lithological mapping of East Tianshan area using integrated data fused by Chinese GF-1 PAN and ASTER multi-spectral data , 2018, Open Geosciences.

[25]  U. Avdan,et al.  SENTINEL-1 and SENTINEL-2 Data Fusion for Wetlands Mapping: Balikdami, Turkey , 2018 .

[26]  Qiuming Cheng,et al.  Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China , 2018, Remote. Sens..

[27]  Xiuliang Jin,et al.  Comparison of digital elevation models and relevant derived attributes , 2017 .

[28]  Z. Niu,et al.  Pre-earthquake Anomaly Detection and Assessment through Lineament Changes Observation Using Multi-temporal Landsat 8-OLI Imageries: Case of Gorkha and Imphal , 2017 .

[29]  Abderrazak El Harti,et al.  Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas , 2017 .

[30]  Severino G. Salmo,et al.  Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery , 2017 .

[31]  H. Rhinane,et al.  Application of Remote Sensing in Geological Mapping, Case Study al Maghrabah Area - Hajjah Region, Yemen , 2017 .

[32]  David P. Roy,et al.  A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring , 2017, Remote. Sens..

[33]  Hirokazu Yamamoto,et al.  Cross-Calibration between ASTER and MODIS Visible to Near-Infrared Bands for Improvement of ASTER Radiometric Calibration , 2017, Sensors.

[34]  M. Hashim,et al.  Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia , 2017 .

[35]  Soufiane Maimouni,et al.  Fractures network mapping using remote sensing in the Paleozoic massif of Tichka (Western High Atlas, Morocco) , 2017, Arabian Journal of Geosciences.

[36]  B. Grasemann,et al.  Detection and analysis of morphotectonic features utilizing satellite remote sensing and GIS: An example in SW Jordan , 2016 .

[37]  Clement Atzberger,et al.  Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples , 2016, Remote. Sens..

[38]  Rubini Mahalingam,et al.  Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping , 2016 .

[39]  J. Irons,et al.  Landsat 8: The plans, the reality, and the legacy , 2016 .

[40]  Harald van der Werff,et al.  Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing , 2016, Remote. Sens..

[41]  M. Hashim,et al.  Structural Mapping of the Bentong‐Raub Suture Zone Using PALSAR Remote Sensing Data, Peninsular Malaysia: Implications for Sediment‐hosted/Orogenic Gold Mineral Systems Exploration , 2016 .

[42]  Simon Plank,et al.  Sentinel-1-based flood mapping: a fully automated processing chain , 2016 .

[43]  E. Yeh,et al.  Brushlines in fault pseudotachylytes: A new criterion for coseismic slip direction , 2016 .

[44]  Satoshi Tsuchida,et al.  Inter-Band Radiometric Comparison and Calibration of ASTER Visible and Near-Infrared Bands , 2015, Remote. Sens..

[45]  Bernhard Jenny,et al.  Improving the representation of major landforms in analytical relief shading , 2015, Int. J. Geogr. Inf. Sci..

[46]  Mazlan Hashim,et al.  ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration , 2014, SpringerPlus.

[47]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[48]  A. Lesne,et al.  Fractal Analysis of Lineaments in Equatorial Africa: Insights on Lithospheric Structure , 2013 .

[49]  A. Pınar,et al.  Imaging of subsurface lineaments in the southwestern part of the Thrace Basin from gravity data , 2013, Earth, Planets and Space.

[50]  Thomas Maurer HOW TO PAN-SHARPEN IMAGES USING THE GRAM-SCHMIDT PAN-SHARPEN METHOD – A RECIPE , 2013 .

[51]  Mazlan Hashim,et al.  Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery , 2013 .

[52]  L. Nováková,et al.  The Results of Borehole Acoustic Imaging from a Granite in the Jihlava District, Czech Republic: Implications for Structural Geological Research , 2012 .

[53]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[54]  P. Levelt,et al.  ESA's sentinel missions in support of Earth system science , 2012 .

[55]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[56]  M. Hashim,et al.  The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits , 2012 .

[57]  K. Koike,et al.  Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data , 2011 .

[58]  Richard Gloaguen,et al.  Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data , 2011 .

[59]  J. Gierke,et al.  An Approach to Lineament Analysis for Groundwater Exploration in Nicaragua , 2011 .

[60]  E. Bedini Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data , 2011 .

[61]  S. Gabr,et al.  Detecting areas of high-potential gold mineralization using ASTER data , 2010 .

[62]  O. Saddiqi,et al.  The South-Western Branch of the Variscan Belt: Evidence from Morocco , 2010 .

[63]  Samuel Corgne,et al.  An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS. , 2010 .

[64]  Na Li Textural and Rule-based Lithological Classification of Remote Sensing Data, and Geological Mapping in Southwestern Prieska Sub-basin, Transvaal Supergroup, South Africa , 2010 .

[65]  M. Hashim,et al.  Lineament mapping using multispectral remote sensing satellite data , 2010 .

[66]  A. Ghulam,et al.  Lithological mapping in the Central Eastern Desert of Egypt using ASTER data , 2010 .

[67]  E. M. Aarab,et al.  Evolution tectono-sédimentaire et magmatique des bassins viséen supérieur d' Azrou-Khénifra et des Jebilet orientales (Meseta marocaine) , 2008 .

[68]  C. Ebinger,et al.  Aeromagnetic and Landsat TM structural interpretation for identifying regional groundwater exploration targets, south-central Zimbabwe Craton , 2008 .

[69]  Xianfeng Zhang,et al.  Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California) , 2007 .

[70]  T. Kusky,et al.  ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt , 2007 .

[71]  L. Rowan,et al.  Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data , 2006 .

[72]  Katsuaki Koike,et al.  Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt , 2006 .

[73]  P. M. van Dijk,et al.  Extraction of morphotectonic features from DEMs: Development and applications for study areas in Hungary and NW Greece , 2005 .

[74]  L. Q. Hung,et al.  Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam , 2005, SPIE Remote Sensing.

[75]  A. Piqué,et al.  The Moroccan Hercynides , 2005 .

[76]  A. Ganas,et al.  DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates☆☆☆ , 2005 .

[77]  Gyozo Jordan,et al.  Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital terrain models. A case study , 2005 .

[78]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[79]  A. Crósta,et al.  Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis , 2003 .

[80]  F. Paganelli,et al.  Use of RADARSAT-1 principal component imagery for structural mapping: a case study in the Buffalo Head Hills area, northern central Alberta, Canada , 2003 .

[81]  Paul E. Lewis,et al.  FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[82]  J. Huntington,et al.  Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[83]  Andrés Riaguas,et al.  LINDENS: a program for lineament length and density analysis , 2000 .

[84]  A. Ono,et al.  Observational performance of ASTER instrument on EOS-AM1 spacecraft , 1994 .

[85]  P. Vidal,et al.  Chronologie Rb-Sr des granitoides hercyniens du Maroc; consequences , 1992 .

[86]  K. Raj Origin And Significance Of Hem Avathi - Tirthahalli Mega-lineament - A Concept , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[87]  H. Diot Mise en place des granitoïdes hercyniens de la Meseta marocaine, Étude structurale des massifs de Sebt de Brikine (Rehamna), de Zaër et d'Oulmès (Massif Central) et d'Aouli-Boumia (Haute Moulouya). Implications géodynamiques , 1989 .

[88]  A. Michard,et al.  Moroccan Hercynides; a Synopsis; the Paleozoic Sedimentary and Tectonic Evolution at the Northern Margin of West Africa , 1989, American Journal of Science.

[89]  C. Hoepffner La tectonique hercynienne dans l'Est du Maroc , 1987 .

[90]  S. Walsh,et al.  Landsat digital enhancements for lineament detection , 1986 .

[91]  Z. Mrini Age et origine des granitoïdes hercyniens du Maroc : Apport de la géochronologie et de la géochimie isotopique (Sr, Nd, Pb) , 1985 .

[92]  A. Mahmood Emplacement of the zoned Zaer pluton, Morocco , 1985 .

[93]  A. R. Harrison,et al.  Standardized principal components , 1985 .

[94]  D. O'leary,et al.  Lineament, linear, lineation: Some proposed new standards for old terms , 1976 .

[95]  Xingping Wen,et al.  Automatic extraction of lineaments based on wavelet edge detection and aided tracking by hillshade , 2020 .

[96]  Zhantayev Zhumabek,et al.  Automated lineament analysis to assess the geodynamic activity areas , 2017, CENTERIS/ProjMAN/HCist.

[97]  E. K. El-Sawy,et al.  Automated , manual lineaments extraction and geospatial analysis for Cairo-Suez district ( Northeastern Cairo-Egypt ) , using remote sensing and GIS , 2016 .

[98]  Dawn L. Siemonsma,et al.  Advanced Spaceborne Thermal Emission and Reflection Radiometer Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) Product, algorithm theoretical basis document , 2015 .

[99]  Mazlan Hashim,et al.  Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia , 2015 .

[100]  Shaheen Alhirmizy Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model ( DEM ) in Kirkuk Northeast Iraq , 2015 .

[101]  K. Raj Lineament Extraction from Southern Chitradurga Schist Belt using Landsat TM, ASTERGDEM and Geomatics Techniques , 2014 .

[102]  T. Kusky,et al.  Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt , 2012 .

[103]  M. Aissa,et al.  Extraction of Structural Lineaments from Satellite Images Landsat 7 ETM+ of Tighza Mining District (Central Morocco) , 2012 .

[104]  A. Sarris,et al.  IDENTIFICATION OF LINEAMENTS WITH POSSIBLE STRUCTURAL ORIGIN USING ASTER IMAGES AND DEM DERIVED PRODUCTS IN WESTERN CRETE, GREECE , 2011 .

[105]  J. Akhir,et al.  Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran - Sungi Lembing area, Malaysia , 2010 .

[106]  L. Olsen,et al.  Monitoring, Observations, and Remote Sensing – Global Dimensions , 2008 .

[107]  Abderrahmane Soulaimani,et al.  The Variscan Belt , 2008 .

[108]  O. Saddiqi,et al.  Continental Evolution: The Geology of Morocco , 2008 .

[109]  Kurt J. Marfurt,et al.  Lineament-preserving filtering , 2007 .

[110]  H. Duzgun,et al.  Discontinuity Mapping with Automatic Lineament Extraction from High Resolution Satellite Imagery , 2004 .

[111]  A. . The emplacement , geochemistry and petrogenesis of two central Morocco Hercynian granites . Geotectonic implications , 2001 .

[112]  J. Lagarde,et al.  Structural characteristics of granitic plutons emplaced during weak regional deformation: examples from late Carboniferous plutons, Morocco , 1990 .

[113]  M. Bouabdelli Tectonique et sedimentation dans un bassin orogenique : le sillon viseen d'azrou-khenifra (est du massif hercynien central du maroc) , 1989 .

[114]  P. Matte La chaine varisque parmi les chaines paleozoiques peri atlantiques, modele d'evolution et position des grands blocs continentaux au Permo-Carbonifere , 1986 .

[115]  G. Giuliani Découverte de minéralisations en Sn-W-Mo dans le pluton granitique hercynien des Zaërs (Massif Central marocain) , 1980 .

[116]  André Michard,et al.  Éléments de géologie marocaine , 1976 .

[117]  William Herbert Hobbs,et al.  Lineaments of the Atlantic Border region , 1904 .