Duration of and decoupling between carbon isotope excursions during the end-Triassic mass extinction and Central Atlantic Magmatic Province emplacement

[1]  C. Bjerrum,et al.  A new correlation of Triassic–Jurassic boundary successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: A time-line for the end-Triassic mass extinction , 2017 .

[2]  D. Bottjer,et al.  Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction , 2016, Nature Communications.

[3]  J. Spangenberg,et al.  Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction , 2016, Scientific Reports.

[4]  J. Erez,et al.  A novel determination of calcite dissolution kinetics in seawater , 2015 .

[5]  J. Payne,et al.  Modelling the impact of pulsed CAMP volcanism on pCO2 and δ13C across the Triassic–Jurassic transition , 2015, Geological Magazine.

[6]  P. Ehrlich,et al.  Accelerated modern human–induced species losses: Entering the sixth mass extinction , 2015, Science Advances.

[7]  J. Wright,et al.  A 30 Myr record of Late Triassic atmospheric pCO2 variation reflects a fundamental control of the carbon cycle by changes in continental weathering , 2015 .

[8]  D. Bottjer,et al.  Andean sponges reveal long-term benthic ecosystem shifts following the end-Triassic mass extinction , 2015 .

[9]  D. Bottjer,et al.  NEW EVIDENCE ON THE ROLE OF SILICEOUS SPONGES IN ECOLOGY AND SEDIMENTARY FACIES DEVELOPMENT IN EASTERN PANTHALASSA FOLLOWING THE TRIASSIC–JURASSIC MASS EXTINCTION , 2014 .

[10]  J. Pálfy,et al.  Volcanism of the Central Atlantic magmatic province as the trigger of environmental and biotic changes around the Triassic-Jurassic boundary , 2014 .

[11]  L. Krystyn,et al.  Towards accurate numerical calibration of the Late Triassic: High- precision U-Pb geochronology constraints on the duration of the Rhaetian , 2014 .

[12]  N. Youbi,et al.  The dawn of CAMP volcanism and its bearing on the end-Triassic carbon cycle disruption , 2014, Journal of the Geological Society.

[13]  J. Payne,et al.  Microbes, mud and methane: cause and consequence of recurrent Early Jurassic anoxia following the end‐Triassic mass extinction , 2013 .

[14]  D. Kent,et al.  Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province , 2013, Science.

[15]  J. Payne,et al.  Carbon cycle dynamics following the end‐Triassic mass extinction: Constraints from paired δ13Ccarb and δ13Corg records , 2012 .

[16]  V. Atudorei,et al.  Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic , 2012 .

[17]  G. Pedersen,et al.  No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction , 2012 .

[18]  D. Bottjer,et al.  Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary , 2012 .

[19]  M. Chiaradia,et al.  Latest Triassic marine Sr isotopic variations, possible causes and implications , 2012 .

[20]  F. Corsetti,et al.  Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate , 2012 .

[21]  M. Leng,et al.  Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods , 2011 .

[22]  Â. Min,et al.  Timing and duration of the Central Atlantic magmatic province in the Newark and Culpeper basins, eastern U.S.A. , 2011 .

[23]  R. Hori,et al.  Marine osmium isotope record across the Triassic-Jurassic boundary from a Pacific pelagic site , 2010 .

[24]  G. Paris,et al.  Early Hettangian benthic-planktonic coupling at Doniford (SW England) Palaeoenvironmental implications for the aftermath of the end-Triassic crisis , 2010 .

[25]  W. Krijgsman,et al.  Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie's Bay/East Quantoxhead, UK) , 2010 .

[26]  U. Schaltegger,et al.  Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level , 2010 .

[27]  C. Spötl,et al.  Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain , 2009, Journal of the Geological Society.

[28]  T. McConnaughey,et al.  Carbon isotopes in mollusk shell carbonates , 2008 .

[29]  A. Tomašových,et al.  Carbon cycle perturbation and stabilization in the wake of the Triassic‐Jurassic boundary mass‐extinction event , 2008 .

[30]  U. Schaltegger,et al.  Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery , 2008 .

[31]  A. Tankard,et al.  Tectonic evolution and paleogeography of the Mesozoic Pucará Basin, central Peru , 2007 .

[32]  K. Williford,et al.  An extended organic carbon-isotope record across the Triassic–Jurassic boundary in the Queen Charlotte Islands, British Columbia, Canada , 2007 .

[33]  P. Falkowski,et al.  End-Triassic calcification crisis and blooms of organic-walled 'disaster species' , 2007 .

[34]  H. Westphal Limestone–marl alternations as environmental archives and the role of early diagenesis: a critical review , 2006 .

[35]  L. Zaninetti,et al.  Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis , 2004 .

[36]  V. Atudorei,et al.  High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada) , 2004 .

[37]  S. Hesselbo,et al.  Sea-level change and facies development across potential Triassic–Jurassic boundary horizons, SW Britain , 2004, Journal of the Geological Society.

[38]  D. Beerling,et al.  Biogeochemical constraints on the Triassic‐Jurassic boundary carbon cycle event , 2002 .

[39]  S. Piasecki,et al.  Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism? , 2002 .

[40]  J. Pálfy,et al.  Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary , 2001 .

[41]  D. Wilbur,et al.  Sudden Productivity Collapse Associated with the Triassic-Jurassic Boundary Mass Extinction , 2001, Science.

[42]  Michael J. Whiticar,et al.  Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane , 1999 .

[43]  Michael A. Arthur,et al.  Interpreting carbon-isotope excursions: carbonates and organic matter , 1999 .

[44]  A. J. Kaufman,et al.  Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. , 1995, Precambrian research.

[45]  P. Meyers Preservation of elemental and isotopic source identification of sedimentary organic matter , 1994 .

[46]  M. Katz,et al.  The Norian/Rhaetian boundary interval at Pignola-Abriola section (southern Apennines, Italy) as a GSSP candidate for the Rhaetian stage: an update , 2016 .

[47]  G. Paris,et al.  Geochemical consequences of intense pulse-like degassing during the onset of the Central Atlantic Magmatic Province , 2016 .

[48]  U. Schacht,et al.  Chapter 9 - Early diagenesis of deep-sea sediments , 2011 .

[49]  F. Hu,et al.  Sedimentary organic matter preservation : A test for selective degradation under oxic conditions , 1999 .

[50]  S. Burns,et al.  Oxygen and carbon isotopic composition of marine carbonate concretions; an overview , 1993 .

[51]  P. Kroopnick The distribution of 13C of ΣCO2 in the world oceans , 1985 .