On the convergence of shifted Laplace preconditioner combined with multilevel deflation

SUMMARY Deflating the shifted Laplacian with geometric multigrid vectors yields speedup. To verify this claim, we investigate a simplified variant of Erlangga and Nabben presented in [Erlangga and Nabben, ETNA, 2008;31:403–424]. We derive expressions for the eigenvalues of the two-level preconditioner for the one-dimensional problem. These expressions show that the algorithm analyzed is not scalable. They also show that the imaginary shift can be increased without delaying the convergence of the outer Krylov acceleration. An increase of the number of grid points per wavelength results in convergence acceleration. This contrasts to the use of the shifted Laplace preconditioner. Our analysis also shows that the use of deflation results in a spectrum more favorable to the convergence of the outer Krylov acceleration. The near-null space components are still insufficiently well resolved, and the number of iterations increases with the wavenumber. In the two-dimensional case, the number of near-zero eigenvalues is larger than in the one-dimensional case. We perform numerical computations with the two-level and multilevel versions of the algorithm on constant and nonconstant wavenumber problems. Our numerical results confirm our spectral analysis. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Cornelis Vuik,et al.  A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation , 2007, J. Comput. Phys..

[2]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[3]  Cornelis Vuik,et al.  A SCALABLE HELMHOLTZ SOLVER COMBINING THE SHIFTED LAPLACE PRECONDITIONER WITH MULTIGRID DEFLATION , 2011 .

[4]  Scott P. MacLachlan,et al.  A fast method for the solution of the Helmholtz equation , 2011, J. Comput. Phys..

[5]  Andrew J. Wathen,et al.  On choice of preconditioner for minimum residual methods for nonsymmetric matrices , 2011 .

[6]  Reinhard Nabben,et al.  Algebraic Multilevel Krylov Methods , 2009, SIAM J. Sci. Comput..

[7]  Jianping Zhu,et al.  An incomplete factorization preconditioner based on shifted Laplace operators for FEM analysis of microwave structures , 2010 .

[8]  Wim Vanroose,et al.  Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems , 2011, Numer. Linear Algebra Appl..

[9]  Wim Vanroose,et al.  On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning , 2009, J. Comput. Phys..

[10]  Cornelis Vuik,et al.  A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..

[11]  Sanna Mönkölä,et al.  Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics , 2010, J. Comput. Appl. Math..

[12]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[13]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[14]  Henri Calandra,et al.  Two-Level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics , 2012 .

[15]  Yogi A. Erlangga,et al.  Advances in Iterative Methods and Preconditioners for the Helmholtz Equation , 2008 .

[16]  Michael B. Giles,et al.  Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .

[17]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[18]  Y. Erlangga,et al.  ON A MULTILEVEL KRYLOV METHOD FOR THE HELMHOLTZ EQUATION PRECONDITIONED BY SHIFTED LAPLACIAN , 2008 .

[19]  René-Édouard Plessix,et al.  A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .

[20]  Cornelis Vuik,et al.  Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .

[21]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[22]  Yogi A. Erlangga,et al.  A robust and efficient iterative method for the numerical solution of the Helmholtz equation , 2005 .

[23]  R. Plessix Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .

[24]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[25]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[26]  Cornelis W. Oosterlee,et al.  A multigrid‐based shifted Laplacian preconditioner for a fourth‐order Helmholtz discretization , 2009, Numer. Linear Algebra Appl..

[27]  Mardochée Magolu monga Made,et al.  Incomplete factorization-based preconditionings for solving the Helmholtz equation , 2001 .

[28]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[29]  Marcus J. Grote,et al.  Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..

[30]  A. Bayliss,et al.  On accuracy conditions for the numerical computation of waves , 1985 .

[31]  Jari Toivanen,et al.  A damping preconditioner for time-harmonic wave equations in fluid and elastic material , 2009, J. Comput. Phys..

[32]  Reinhard Nabben,et al.  Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..

[33]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[34]  Y. Saad,et al.  Preconditioning Helmholtz linear systems , 2010 .

[35]  J. M. Tang Two-level preconditioned conjugate gradient methods with applications to bubbly flow problems , 2008 .

[36]  René-Édouard Plessix,et al.  Separation-of-variables as a preconditioner for an iterative Helmholtz solver , 2003 .

[37]  Erkki Heikkola,et al.  An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..