How green is green chemistry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics

As the world strives to create a more sustainable environment, green chemistry has come to the fore in attempts to minimize the use of hazardous materials and shift the focus towards renewable sources. Chlorophylls, being the definitive "green" chemical are rarely used for such purposes and this article focuses on the exploitation of this natural resource, the current applications of chlorophylls and their derivatives whilst also providing a perspective on the commercial potential of large-scale isolation of these pigments from biomass for energy and medicinal applications.

[1]  B. Wachter,et al.  The Green Biorefinery Austria: Development of an integrated system for green biomass utilization , 2004 .

[2]  K. Kvenvolden Organic geochemistry - A retrospective of its first 70 years , 2006 .

[3]  Simone Moser,et al.  Structures of Chlorophyll Catabolites in Bananas (Musa acuminata) Reveal a Split Path of Chlorophyll Breakdown in a Ripening Fruit , 2012, Chemistry.

[4]  B. Wilson,et al.  Evaluation of one- and two-photon activated photodynamic therapy with pyropheophorbide-a methyl ester in human cervical, lung and ovarian cancer cells. , 2014, Journal of photochemistry and photobiology. B, Biology.

[5]  R. Woodward,et al.  The total synthesis of chlorophyll a , 1990 .

[6]  Patrícia B Momo,et al.  Chlorins: Natural Sources, Synthetic Developments and Main Applications , 2014 .

[7]  W. Vermaas,et al.  Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803. , 2007, Biochimica et biophysica acta.

[8]  M. Gross,et al.  Determination of structure and properties of modified chlorophylls by using fast atom bombardment combined with tandem mass spectrometry , 1990, Journal of the American Society for Mass Spectrometry.

[9]  Lay Gaik Teoh,et al.  Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles , 2008 .

[10]  E. W. Baker,et al.  Porphyrin geochemistry of Atlantic Jurassic-Cretaceous black shales , 1986 .

[11]  B. Kräutler,et al.  On the enigma of chlorophyll degradation:the constitution of a secoporphinoid catabolite. , 1991 .

[12]  M. Kolb,et al.  Industrielle organische Chemie , 1993 .

[13]  Jonathan Woodward,et al.  Biotechnology: Enzymatic production of biohydrogen , 2000, Nature.

[14]  T. Lash,et al.  Total synthesis of the porphyrin mineral abelsonite and related petroporphyrins with five-membered exocyclic rings ☆ , 2003 .

[15]  R. Willstätter,et al.  Untersuchungen über Chlorophyll. I. Ueber eine Methode der Trennung und Bestimmung von Chlorophyllderivaten , 1906 .

[16]  S. Briggs,et al.  A Porphyrin Pathway Impairment Is Responsible for the Phenotype of a Dominant Disease Lesion Mimic Mutant of Maize , 1998, Plant Cell.

[17]  B. Kräutler,et al.  Chlorophyll breakdown in higher plants. , 2011, Biochimica et biophysica acta.

[18]  A. Marshall,et al.  Petroleum crude oil characterization by IMS-MS and FTICR MS. , 2009, Analytical Chemistry.

[19]  M. Senge RECENT ADVANCES IN THE BIOSYNTHESIS AND CHEMISTRY OF THE CHLOROPHYLLS , 1993 .

[20]  Hisashi Ito,et al.  Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity. , 2014, Plant & cell physiology.

[21]  Y. Fujita,et al.  Identification of Two Homologous Genes, chlAI and chlAII, That Are Differentially Involved in Isocyclic Ring Formation of Chlorophyll a in the Cyanobacterium Synechocystis sp. PCC 6803* , 2008, Journal of Biological Chemistry.

[22]  R. Willows,et al.  Mechanism and regulation of Mg-chelatase. , 1997, The Biochemical journal.

[23]  A. Battersby Tetrapyrroles: the pigments of life. , 2000, Natural product reports.

[24]  M. Senge,et al.  Synthesis, Reactivity and Structure of Chlorophylls , 2006 .

[25]  T. Müller,et al.  Chlorophyll Breakdown as Seen in Bananas: Sign of Aging and Ripening – A Mini-Review , 2010, Gerontology.

[26]  W. Rüdiger,et al.  Chlorophyll a Formation in the Chlorophyll bReductase Reaction Requires Reduced Ferredoxin* , 1998, The Journal of Biological Chemistry.

[27]  S. Beale,et al.  The Chlorophyll Biosynthetic Enzyme Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase (Characterization and Partial Purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803) , 1996, Plant physiology.

[28]  R. Woodward,et al.  The total synthesis of chlorophyll , 1960 .

[29]  E. A. Doisy,et al.  The constitution and synthesis of vitamin K1. , 1939 .

[30]  W. Xing,et al.  A hybrid photoelectrochemical biofuel cell based on the photosensitization of a chlorophyll derivative on TiO2 film , 2012 .

[31]  B. Kamm,et al.  Principles of biorefineries , 2004, Applied Microbiology and Biotechnology.

[32]  Paul T Anastas,et al.  Origins, current status, and future challenges of green chemistry. , 2002, Accounts of chemical research.

[33]  M. Grätzel,et al.  The molecular engineering of organic sensitizers for solar-cell applications. , 2013, Angewandte Chemie.

[34]  M. Ogata,et al.  Chlorophyll derived from Chlorella inhibits dioxin absorption from the gastrointestinal tract and accelerates dioxin excretion in rats. , 2001, Environmental health perspectives.

[35]  Y. Amao Photoinduced Biohydrogen Production from Biomass , 2008, International journal of molecular sciences.

[36]  A. Krieger-Liszkay Singlet oxygen production in photosynthesis. , 2004, Journal of experimental botany.

[37]  E. A. Doisy,et al.  The constitution and sunthesis of vitamin K1 . , 1939 .

[38]  H. H. Inhoffen Recent progress in chlorophyll and porphyrin chemistry , 1968 .

[39]  Y. Amao,et al.  Visible light induced biohydrogen production from sucrose using the photosensitization of Mg chlorophyll-a. , 2002, Bioconjugate chemistry.

[40]  Fantao Zhang,et al.  Divinyl Chlorophyll(ide) a Can Be Converted to Monovinyl Chlorophyll(ide) a by a Divinyl Reductase in Rice1[W] , 2010, Plant Physiology.

[41]  Cristina Kurachi,et al.  Photobiological characteristics of chlorophyll a derivatives as microbial PDT agents , 2014, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[42]  F. Montforts,et al.  Discovery and Synthesis of Less Common Natural Hydroporphyrins , 1994 .

[43]  Ethan Sternberg,et al.  Porphyrin-based photosensitizers for use in photodynamic therapy , 1998 .

[44]  David Woolfson,et al.  Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments. , 2009, Future medicinal chemistry.

[45]  J. Rontani,et al.  Abiotic degradation of intact and photooxidized chlorophyll phytyl chain under simulated geological conditions , 1995 .

[46]  T. Itoh,et al.  Photostabilized chlorophyll a in mesoporous silica: adsorption properties and photoreduction activity of chlorophyll a. , 2002, Journal of the American Chemical Society.

[47]  Manivannan Ethirajan,et al.  The role of porphyrin chemistry in tumor imaging and photodynamic therapy. , 2011, Chemical Society reviews.

[48]  C. Borczyskowski,et al.  Self-organization principles in the formation of multiporphyrin complexes and "semiconductor quantum dot-porphyrin" nanoassemblies , 2014 .

[49]  H. Wilks,et al.  Enzymology below 200 K: The kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Itoh,et al.  Photostabilization of chlorophyll a adsorbed onto smectite , 1995 .

[51]  P. Hynninen,et al.  Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. , 2004, Journal of photochemistry and photobiology. B, Biology.

[52]  R. Douglas,et al.  Dragon fish see using chlorophyll , 1998, Nature.

[53]  S. Chernomorsky,et al.  Effect of dietary chlorophyll derivatives on mutagenesis and tumor cell growth. , 1999, Teratogenesis, carcinogenesis, and mutagenesis.

[54]  H. Hirt,et al.  Reactive oxygen species: metabolism, oxidative stress, and signal transduction. , 2004, Annual review of plant biology.

[55]  M. Clemens,et al.  Effect of dietary phytochemicals on cancer development (review) , 1998, International journal of molecular medicine.

[56]  S. Granick MAGNESIUM VINYL PHEOPORPHYRIN a5, ANOTHER INTERMEDIATE IN THE BIOLOGICAL SYNTHESIS OF CHLOROPHYLL , 1950 .

[57]  D. Kessel,et al.  PHOTOSENSITIZATION WITH DERIVATIVES OF CHLOROPHYLL , 1989, Photochemistry and photobiology.

[58]  Raoul Kopelman,et al.  Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy , 2011, Lasers in surgery and medicine.

[59]  T. Kamachi,et al.  Hydrogen Evolution from Glucose with the Combination of Glucose Dehydrogenase and Hydrogenase from A. eutrophus H16 , 1999 .

[60]  Mohammadi Ali,et al.  Nickel and Vanadyl Porphyrins in Saudi Arabian Crude Oils , 1993 .

[61]  C. B. V. Niel,et al.  On the morphology and physiology of the purple and green sulphur bacteria , 2004, Archiv für Mikrobiologie.

[62]  Lionel R. Milgrom,et al.  The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds , 1997 .

[63]  H. Tamiaki,et al.  Photoreduced Deformylation of Zinc Chlorophyll-d Derivative , 2012 .

[64]  P. Hynninen,et al.  Tracing the allomerization pathways of chlorophylls by (18)O-labeling and mass spectrometry. , 2002, The Journal of organic chemistry.

[65]  D. Sudakin Dietary Aflatoxin Exposure and Chemoprevention of Cancer: A Clinical Review , 2003, Journal of toxicology. Clinical toxicology.

[66]  P. Jacobi,et al.  New strategies for the synthesis of biologically important tetrapyrroles. The "B,C + D + A" approach to linear tetrapyrroles. , 2000, The Journal of organic chemistry.

[67]  Michael Adams,et al.  In vitro hydrogen production by glucose dehydrogenase and hydrogenase , 1996, Nature Biotechnology.

[68]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[69]  T. Miyatake,et al.  Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems , 2010 .

[70]  A. Gossauer,et al.  Chlorophyll catabolism — structures, mechanisms, conversions , 1996 .

[71]  A. Tauber,et al.  Chlorophylls. IX. The first phytochlorin–fullerene dyads: synthesis and conformational studies , 1999 .

[72]  A. M. Api,et al.  Fragrance material review on phytol. , 2010, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[73]  M. Senge,et al.  The translocator protein as a potential molecular target for improved treatment efficacy in photodynamic therapy. , 2014, Future medicinal chemistry.

[74]  C. Bauer,et al.  Characterization of Chlorophyll a and Bacteriochlorophyll a Synthases by Heterologous Expression in Escherichia coli* , 1997, The Journal of Biological Chemistry.

[75]  H. Furukawa,et al.  Adsorption of Zinc-Metallated Chlorophyllous Pigments on FSM-Type Mesoporous Silica , 2000 .

[76]  J. P. Allen,et al.  Structures of proteins and cofactors: X-ray crystallography , 2009, Photosynthesis Research.

[77]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[78]  Photobleaching and photodeposition in a chlorophyll based solution , 2000 .

[79]  M. Fingas,et al.  Oil spill identification , 1999 .

[80]  G. Calogero,et al.  Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[81]  M. Senge,et al.  Hydroxylation of Chlorinated and Unchlorinated Chlorophylls in vitro , 1988 .

[82]  M. Schmid,et al.  Stereoselektive Totalsynthese von natürlichem Phytol und Phytolderivaten und deren Verwendung zur Herstellung von natürlichem Vitamin K1 , 1982 .

[83]  A. Stoll,et al.  Untersuchungen über chlorophyll; methoden und ergebnisse, von Richard Willstätter und Arthur Stoll. Mit 16 textfiguren und 11 tafeln. , 1913 .

[84]  Y. Amao,et al.  Dye-sensitized Solar Cell with the Electrode of Chlorophyll Derivative Adsorbed on Titanium Dioxide Film , 2003 .

[85]  John C. Kephart Chlorophyll derivatives—Their chemistry? commercial preparation and uses , 2008, Economic Botany.

[86]  Birgit Kamm,et al.  Green biorefinery demonstration plant in Havelland (Germany) , 2010 .

[87]  Stanley B. Brown,et al.  THE DEGRADATION OF CHLOROPHYLL - A BIOLOGICAL ENIGMA. , 1987, The New phytologist.

[88]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[89]  A. Moser Science & technology for the future : Nature versus economy ? , 2001 .

[90]  M. Senge,et al.  CHLORINATION OF ISOLATED CHLOROPHYLLS in vitro , 1988 .

[91]  U. M. Lanfer-Marquez,et al.  Copper chlorophyllin: A food colorant with bioactive properties? , 2012 .

[92]  R. Finkelman,et al.  Abelsonite, nickel porphyrin, a new mineral from the Green River Formation, Utah. [C31H32N4Ni] , 1978 .

[93]  Mathias O. Senge,et al.  Chlorophylls, Symmetry, Chirality, and Photosynthesis , 2014, Symmetry.

[94]  K. Oeggl The significance of the Tyrolean Iceman for the archaeobotany of Central Europe , 2009 .

[95]  C. Fookes,et al.  Biosynthesis of the pigments of life: formation of the macrocycle , 1980, Nature.

[96]  D. Pippin,et al.  A new synthesis of chlorins. , 2001, Organic letters.

[97]  S. Beale,et al.  Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris. , 1992, Biochemistry.

[98]  J. Fuhrhop,et al.  THE PHOTOOXYGENATION OF METALLOPORPHYRINS AND METALLOCHLORINS * , 1973, Annals of the New York Academy of Sciences.

[99]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[100]  K. Smith,et al.  Pyrroles and related compounds. XXIV. Separation and oxidative degradation of chlorophyll derivatives. , 1973, Journal of The Chemical Society-perkin Transactions 1.

[101]  Amy Gryshuk,et al.  Nature: A rich source for developing multifunctional agents. tumor‐imaging and photodynamic therapy , 2006, Lasers in surgery and medicine.

[102]  S. Sasaki,et al.  Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[103]  T. Itoh,et al.  Photostable chlorophyll a-bentonite conjugate exhibits high photosensitive activity , 1997 .

[104]  Robert Eugene Blankenship,et al.  Bacteriochlorophyll f: properties of chlorosomes containing the “forbidden chlorophyll” , 2012, Front. Microbio..

[105]  Kevin M. Smith,et al.  Ascorbic acid photoreductions of zinc(II) chlorophyll derivatives: access to metal-free isobacteriochlorins , 1988 .

[106]  R. Brereton,et al.  PRODUCTS OF CHLOROPHYLL PHOTODEGRADATION–2. STRUCTURAL IDENTIFICATION , 1990 .

[107]  Simone Moser,et al.  Blue luminescence of ripening bananas. , 2008, Angewandte Chemie.

[108]  T. Itoh,et al.  Photostable chlorophyll a conjugated with poly(vinylpyrrolidone)-smectite catalyzes photoreduction and hydrogen gas evolution by visible light. , 1998, Bioconjugate chemistry.

[109]  Tsutomu Miyasaka,et al.  Chlorin-sensitized High-efficiency Photovoltaic Cells that Mimic Spectral Response of Photosynthesis , 2008 .

[110]  Jana Vogel,et al.  Chemical Aspects Of Photodynamic Therapy , 2016 .

[111]  Y. Amao,et al.  Visible light-operated saccharide–O2 biofuel cell based on the photosensitization of chlorophyll derivative on TiO2 film , 2008 .

[112]  B. Kräutler,et al.  Solving the Riddle of Chlorophyll Breakdown , 1999 .

[113]  Y. Amao,et al.  Photochemical and enzymatic synthesis of formic acid from CO2 with chlorophyll and dehydrogenase system , 2006 .

[114]  K. Sumathy,et al.  AN OVERVIEW OF HYDROGEN PRODUCTION FROM BIOMASS , 2006 .

[115]  Chulhong Kim,et al.  Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. , 2011, Nature materials.

[116]  H. Kautsky,et al.  Neue Versuche zur Kohlensäureassimilation , 1931, Naturwissenschaften.

[117]  T. Hasan,et al.  The potential for photodynamic therapy in the treatment of localized infections. , 2005, Photodiagnosis and photodynamic therapy.

[118]  J. Boff,et al.  Chemistry and Reaction of Singlet Oxygen in Foods. , 2002, Comprehensive reviews in food science and food safety.

[119]  R. A. Neville,et al.  Passive remote sensing of phytoplankton via chlorophyll α fluorescence , 1977 .

[120]  H. Almquist,et al.  Synthetic and natural antihemorrhagic compounds. , 1939 .

[121]  G. Hodgson GEOCHEMISTRY OF PORPHYRINS—REACTIONS DURING DIAGENESIS , 1973, Annals of the New York Academy of Sciences.

[122]  S. Beale,et al.  Chlorophyll Biosynthesis: Recent Advances and Areas of Current Interest , 1983 .

[123]  Govindjee,et al.  Current challenges in photosynthesis: from natural to artificial , 2014, Front. Plant Sci..

[124]  G. V. Ponomarev,et al.  Modification of the Peripheral Substituents in Chlorophylls a and b and Their Derivatives (Review) , 2004 .

[125]  K. Imai,et al.  Effects of sodium metallochlorophyllins on the activity and components of the microsomal drug-metabolizing enzyme system in rat liver. , 1986, Chemical & pharmaceutical bulletin.

[126]  B. Kräutler Chlorophyll breakdown and chlorophyll catabolites in leaves and fruit , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[127]  C. Frankenberg,et al.  New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity , 2011, Geophysical Research Letters.

[128]  A. S. Kazarin,et al.  Practical Applications of Phthalocyanines - from Dyes and Pigments to Materials for Optical, Electronic and Photo-electronic Devices , 2012 .

[129]  Jae Kwan Lee,et al.  Molecular engineering of organic sensitizers for solar cell applications. , 2006, Journal of the American Chemical Society.

[130]  In vitro-mutagenesis of NADPH:protochlorophyllide oxidoreductase B: two distinctive protochlorophyllide binding sites participate in enzyme catalysis and assembly , 2006, Molecular Genetics and Genomics.

[131]  A. Harriman,et al.  Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen , 1982 .

[132]  E. W. Baker,et al.  The Structure of Abelsonite , 1984, Science.

[133]  A. Weston,et al.  Transcriptional profiles of benzo(a)pyrene exposure in normal human mammary epithelial cells in the absence or presence of chlorophyllin. , 2008, Mutation research.

[134]  A. Mennito,et al.  Observation of vanadyl porphyrins and sulfur-containing vanadyl porphyrins in a petroleum asphaltene by atmospheric pressure photonionization Fourier transform ion cyclotron resonance mass spectrometry. , 2008, Rapid communications in mass spectrometry : RCM.

[135]  Hisashi Ito,et al.  Conversion of Chlorophyll b to Chlorophyll a via 7-Hydroxymethyl Chlorophyll (*) , 1996, The Journal of Biological Chemistry.

[136]  M. Grätzel Dye-sensitized solar cells , 2003 .

[137]  Yaqiong Li,et al.  Structure of chlorophyll f. , 2013, Organic letters.

[138]  R. Ocampo,et al.  Extraction of bound porphyrins from sulphur-rich sediments and their use for reconstruction of palaeoenvironments , 1993, Nature.

[139]  Andreas Holzinger,et al.  Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death , 2009, Proceedings of the National Academy of Sciences.

[140]  R. Ocampo,et al.  Separation and identification of porphyrin biomarkers from a heavy crude oil Zaap-1 offshore well, Sonda de Campeche, México , 2014 .

[141]  T. Itoh,et al.  Glutamate synthesis via photoreduction of NADP+ by photostable chlorophyllide coupled with polyethylene-glycol. , 2001, Biotechnology and bioengineering.

[142]  J. Harada,et al.  A seventh bacterial chlorophyll driving a large light-harvesting antenna , 2012, Scientific Reports.

[143]  A. Treibs Chlorophyll- und Häminderivate in bituminösen Gesteinen, Erdölen, Erdwachsen und Asphalten. Ein Beitrag zur Entstehung des Erdöls , 1934 .

[144]  Samuel I. Beale,et al.  Enzymes of chlorophyll biosynthesis , 1999, Photosynthesis Research.

[145]  E. Galindo,et al.  Production of 6-pentyl-α-pyrone by Trichoderma harzianum cultured in unbaffled and baffled shake flasks , 2004 .

[146]  R. Brereton,et al.  PRODUCTS OF CHLOROPHYLL PHOTODEGRADATION–1. DETECTION and SEPARATION , 1990 .

[147]  Yasushi Koyama,et al.  Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes. , 2010, Biosensors & bioelectronics.

[148]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .