Kernel and Probit Estimates in Quantal Bioassay

Abstract A kernel method for the estimation of quantal dose-response curves is considered. In contrast to parametric modeling, this local smoothing method does not require any assumptions beyond smoothness of the dose-response curve and, in this sense, is nonparametric. In finite-sample situations, the kernel estimate of the dose-response curve is not necessarily monotone and, therefore, if the additional assumption of monotonicity of the dose-response curve is made, a monotonized version is discussed. Bias, variance, asymptotic normality, and uniform consistency, including rates of convergence of kernel estimates, are derived and applied to establish consistency and limiting distribution of kernel estimates of the EDα. Here, EDα is the effective dose at level α, that is, the dose where 100α% of the subjects show a response. The properties of the kernel estimated EDα are compared with the corresponding properties of the maximum likelihood estimator assuming the probit model. Practical application of the k...

[1]  Richard L. Schmoyer,et al.  Sigmoidally Constrained Maximum Likelihood Estimation in Quantal Bioassay , 1984 .

[2]  J. Berkson Application of the Logistic Function to Bio-Assay , 1944 .

[3]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[4]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[5]  E. Nadaraya On Estimating Regression , 1964 .

[6]  C. I. Bliss,et al.  THE METHOD OF PROBITS. , 1934, Science.

[7]  J. Staniswalis,et al.  Kernel estimates of dose response. , 1988, Biometrics.

[8]  Carrol S. Weil,et al.  Tables for Convenient Calculation of Median-Effective Dose (LD50 or ED50) and Instructions in their Use. , 1952 .

[9]  Estimation of LD50 by moving averages. , 1952, The Journal of hygiene.

[10]  Jerry Halpern,et al.  Robust estimators for quantal bioassay , 1980 .

[11]  M. Priestley,et al.  Non‐Parametric Function Fitting , 1972 .

[12]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[13]  Ulrich Stadtmüller,et al.  Estimation of Heteroscedasticity in Regression Analysis , 1987 .

[14]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[15]  H. Müller,et al.  Variable Bandwidth Kernel Estimators of Regression Curves , 1987 .

[16]  C. Spearman,et al.  The method of 'right and wrong cases' ('constant stimuli') without Gauss's formulae , 1908 .

[17]  H. Muller Kernel estimators of zeros and of location and size of extrema of regression functions , 1985 .

[18]  H. Müller,et al.  Estimating regression functions and their derivatives by the kernel method , 1984 .

[19]  G. Collomb Estimation Non-paramétrique de la Régression: Revue Bibliographique@@@Estimation Non-parametrique de la Regression: Revue Bibliographique , 1981 .

[20]  H. Müller Optimal designs for nonparametric kernel regression , 1984 .

[21]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[22]  Martin A. Hamilton,et al.  Robust Estimates of the ED50 , 1979 .

[23]  W. R. Thompson,et al.  USE OF MOVING AVERAGES AND INTERPOLATION TO ESTIMATE MEDIAN-EFFECTIVE DOSE: I. Fundamental Formulas, Estimation of Error, and Relation to Other Methods. , 1947, Bacteriological reviews.

[24]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[25]  J. Rice Bandwidth choice for differentiation , 1986 .

[26]  J. K. Benedetti On the Nonparametric Estimation of Regression Functions , 1977 .

[27]  OPTIMUM MOVING AVERAGES FOR THE ESTIMATION OF MEDIAN EFFECTIVE DOSE IN BIOASSAY. , 1963, The Journal of hygiene.

[28]  R. Tibshirani,et al.  Generalized Additive Models: Some Applications , 1987 .