Nonconservative Coupling in a Passive Silicon Microring Resonator.

The authors report on nonconservative coupling in a passive silicon microring between its clockwise and counterclockwise resonance modes. The coupling coefficient is adjustable using a thermo-optic phase shifter. The resulting resonance of the supermodes due to nonconservative coupling is predicted in theory and demonstrated in experiments. This Letter paves the way for fundamental studies of on-chip lasers and quantum photonics, and their potential applications.

[1]  Switchable lasing in multimode microcavities. , 2007, Physical review letters.

[2]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[3]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[4]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[5]  S. Girvin,et al.  Quantum non-demolition detection of single microwave photons in a circuit , 2010, 1003.2734.

[6]  J. Upham,et al.  Strong coupling between distant photonic nanocavities and its dynamic control , 2011, Nature Photonics.

[7]  Vladimir M. Shalaev,et al.  Metamaterials: Loss as a route to transparency , 2009 .

[8]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[9]  B. Zhen,et al.  Exceptional surfaces in PT-symmetric non-Hermitian photonic systems , 2018, Optica.

[10]  Isabelle Sagnes,et al.  Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers , 2014, Nature Photonics.

[11]  Wim Bogaerts,et al.  Backscattering in silicon microring resonators: a quantitative analysis , 2016 .

[12]  Ling Lu,et al.  Spawning rings of exceptional points out of Dirac cones , 2015, Nature.

[13]  Zach DeVito,et al.  Opt , 2017 .

[14]  Yikai Su,et al.  Dense wavelength conversion and multicasting in a resonance-split silicon microring , 2008 .

[15]  Andrew G. Glen,et al.  APPL , 2001 .

[16]  Andrew K. Harter,et al.  Passive parity-time-symmetry-breaking transitions without exceptional points in dissipative photonic systems [Invited] , 2018, Photonics Research.

[17]  Michael J. Hartmann,et al.  Strongly interacting polaritons in coupled arrays of cavities , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[18]  Lech Wosinski,et al.  Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling. , 2008, Optics express.

[19]  Masaya Notomi,et al.  Large-scale arrays of ultrahigh-Q coupled nanocavities , 2008 .

[20]  S. Longhi,et al.  Non-Hermitian topological light steering , 2019, Science.

[21]  F. Nori,et al.  Parity–time symmetry and exceptional points in photonics , 2019, Nature Materials.

[22]  Erik Lucero,et al.  Deterministic entanglement of photons in two superconducting microwave resonators. , 2010, Physical review letters.

[23]  Ang Li,et al.  Backcoupling manipulation in silicon ring resonators , 2018 .

[24]  Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point , 2019, Nature Communications.

[25]  Isabelle Sagnes,et al.  Ultrabright source of entangled photon pairs , 2010, Nature.

[26]  V. Savona,et al.  Single photons from coupled quantum modes. , 2010, Physical review letters.

[27]  V. Giordano,et al.  Simple model for the mode-splitting effect in whispering-gallery-mode resonators , 2005, IEEE Transactions on Microwave Theory and Techniques.

[28]  M Segev,et al.  Topologically protected bound states in photonic parity-time-symmetric crystals. , 2017, Nature materials.

[29]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[30]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[31]  D. Kwong,et al.  All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. , 2009, Physical review letters.