CFD Simulations of Wave Propagation and Shoaling over a Submerged Bar

Abstract The wave propagation over a submerged bar is simulated using the open source CFD model REEF3D and the numerical results are compared to the experimental data. The transformation of the wave resulting in higher harmonics in the wave train is observed as the wave propagates over the crest of the bar. The difference between the wave transformation processes for two different incident wave heights is studied. The higher incident wave height shows more shoaling than the lower incident wave height. The numerical results show a good agreement with the experimental data.

[2]  Jurjen A. Battjes,et al.  Numerical simulation of nonlinear wave propagation over a bar , 1994 .

[3]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[4]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[5]  J. Kirby,et al.  Dynamics of surf-zone turbulence in a spilling breaker , 1996 .

[6]  Hans Bihs Three-Dimensional Numerical Modeling of Local Scouring in Open Channel Flow , 2011 .

[7]  Jurjen A. Battjes,et al.  Experimental investigation of wave propagation over a bar , 1993 .

[8]  Kuang-An Chang,et al.  Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle , 2001 .

[9]  Peter Bradshaw,et al.  Calculation of boundary-layer development using the turbulent energy equation: compressible flow on adiabatic walls , 1971, Journal of Fluid Mechanics.

[10]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[11]  Erik Damgaard Christensen Turbulence in breaking waves - A numerical investigation , 1996 .

[12]  Kuang-An Chang,et al.  Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part II: Cnoidal waves , 2001 .

[13]  Stefan Mayer,et al.  A FRACTIONAL STEP METHOD FOR UNSTEADY FREE-SURFACE FLOW WITH APPLICATIONS TO NON-LINEAR WAVE DYNAMICS , 1998 .

[14]  Paul A. Durbin,et al.  Limiters and wall treatments in applied turbulence modeling , 2009 .

[15]  J. Chaplin,et al.  The effect of relative crest submergence on wave breaking over submerged slopes , 2008 .

[16]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[17]  W. Rodi,et al.  Calculation of Secondary Currents in Channel Flow , 1982 .

[18]  Nobuhisa Kobayashi,et al.  WAVE REFLECTION AND RUN-UP ON ROUGH SLOPES , 1987 .

[19]  Jørgen Fredsøe,et al.  A wave generation toolbox for the open‐source CFD library: OpenFoam® , 2012 .

[20]  D. Wilcox Turbulence modeling for CFD , 1993 .

[21]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[22]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[23]  Hans Bihs,et al.  Breaking characteristics and geometric properties of spilling breakers over slopes , 2015 .

[24]  Odd M. Faltinsen,et al.  A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries , 2008, J. Comput. Phys..

[25]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .