Minimizing the Polarization Leakage of Geometric-phase Coronagraphs with Multiple Grating Pattern Combinations

The design of liquid-crystal diffractive phase plate coronagraphs for ground-based and space-based high-contrast imaging systems is limited by the trade-off between spectral bandwidth and polarization leakage. We demonstrate that by combining phase patterns with a polarization grating (PG) pattern directly followed by one or several separate PGs, we can suppress the polarization leakage terms by additional orders of magnitude by diffracting them out of the beam. \textcolor{black}{Using two PGs composed of a single-layer liquid crystal structure in the lab, we demonstrate a leakage suppression of more than an order of magnitude over a bandwidth of 133 nm centered around 532 nm. At this center wavelength we measure a leakage suppression of three orders of magnitude.} Furthermore, simulations indicate that a combination of two multi-layered liquid-crystal PGs can suppress leakage to $<10^{-5}$ for 1-2.5 $\mu$m and $<10^{-10}$ for 650-800 nm. We introduce multi-grating solutions with three or more gratings that can be designed to have no separation of the two circular polarization states, and offer even deeper suppression of polarization leakage. We present simulations of a triple-grating solution that has $<10^{-10}$ leakage on the first Airy ring from 450 nm to 800 nm. We apply the double-grating concept to the Vector-Vortex coronagraph of charge 4, and demonstrate in the lab that polarization leakage no longer limits the on-axis suppression for ground-based contrast levels. Lastly, we report on the successful installation and first-light results of a double-grating vector Apodizing Phase Plate pupil-plane coronagraph installed at the Large Binocular Telescope. We discuss the implications of these new coronagraph architectures for high-contrast imaging systems on the ground and in space.

[1]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[2]  E. Serabyn,et al.  Overcoming the tradeoff between efficiency and bandwidth for vector vortex waveplates , 2019, 2019 IEEE Aerospace Conference.

[3]  M. Kudenov,et al.  Fabrication of ideal geometric-phase holograms with arbitrary wavefronts , 2015 .

[4]  Michael J. Escuti,et al.  ON-SKY PERFORMANCE ANALYSIS OF THE VECTOR APODIZING PHASE PLATE CORONAGRAPH ON MagAO/Clio2 , 2017, 1702.04193.

[5]  Cornelis Uiterwaal,et al.  Creation of optical vortices in femtosecond pulses. , 2005, Optics express.

[6]  Dimitri Mawet,et al.  Performance and sensitivity of vortex coronagraphs on segmented space telescopes , 2017, Optical Engineering + Applications.

[7]  Dimitri Mawet,et al.  Vector vortex coronagraphy for exoplanet detection with spatially variant diffractive waveplates , 2019, Journal of the Optical Society of America B.

[8]  V. Vaitheeswaran,et al.  The Large Binocular Telescope mid-infrared camera (LMIRcam): final design and status , 2010, Astronomical Telescopes + Instrumentation.

[9]  M. Escuti,et al.  Direct-writing of complex liquid crystal patterns. , 2014, Optics express.

[10]  Dimitri Mawet,et al.  Scalar vortex coronagraph mask design and predicted performance , 2019, Optical Engineering + Applications.

[11]  Russell A. Chipman,et al.  Polarization Aberrations in Astronomical Telescopes: The Point Spread Function , 2015 .

[12]  Christoph U. Keller,et al.  Astronomical Polarimetry: Polarized Views of Stars and Planets , 2013 .

[13]  Dimitri Mawet,et al.  The W. M. Keck Observatory Infrared Vortex Coronagraph and a First Image of HIP 79124 B , 2016 .

[14]  Grover A. Swartzlander,et al.  Vortex-phase filtering technique for extracting spatial information from unresolved sources. , 2014, Applied optics.

[15]  Julien Lozi,et al.  First light of the CHARIS high-contrast integral-field spectrograph , 2017, Optical Engineering + Applications.

[16]  D. Mawet,et al.  An image of an exoplanet separated by two diffraction beamwidths from a star , 2010, Nature.

[17]  David M. Shemo,et al.  Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration. , 2009, Optics express.

[18]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[19]  J. Angel,et al.  First On-Sky High-Contrast Imaging with an Apodizing Phase Plate* , 2007, astro-ph/0702324.

[20]  Frantz Martinache,et al.  SCExAO, an instrument with a dual purpose: perform cutting-edge science and develop new technologies , 2018, Astronomical Telescopes + Instrumentation.

[21]  D. Mawet,et al.  Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph , 2013, 1304.1180.

[22]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[23]  Andrew Serio,et al.  The Gemini Planet Imager: First Light , 2014, 1403.7520.

[24]  Dimitri Mawet,et al.  Three years of harvest with the vector vortex coronagraph in the thermal infrared , 2016, Astronomical Telescopes + Instrumentation.

[25]  S. Pancharatnam,et al.  Achromatic combinations of birefringent plates , 1955 .

[26]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[27]  Dimitri Mawet,et al.  Combining vector-phase coronagraphy with dual-beam polarimetry , 2014, Astronomical Telescopes and Instrumentation.

[28]  Jarron Leisenring,et al.  First light with ALES: A 2-5 micron adaptive optics Integral Field Spectrograph for the LBT , 2015, SPIE Optical Engineering + Applications.

[29]  Frans Snik,et al.  Performance characterization of a broadband vector Apodizing Phase Plate coronagraph. , 2014, Optics express.

[30]  Michael J. Escuti,et al.  Controlling Light with Geometric-Phase Holograms , 2016 .

[31]  Michael J. Escuti,et al.  The vector apodizing phase plate coronagraph: prototyping, characterization and outlook , 2014, Astronomical Telescopes and Instrumentation.

[32]  Michael J. Escuti,et al.  Multi-color holography with a two-stage patterned liquid-crystal element , 2019, Optical Materials Express.

[33]  M. Berry The geometric phase , 1988 .

[34]  Michael J. Escuti,et al.  A high throughput liquid crystal light shutter for unpolarized light using polymer polarization gratings , 2011, Defense + Commercial Sensing.

[35]  Erez Hasman,et al.  Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures , 2002 .

[36]  Julien Lozi,et al.  MagAO-X: project status and first laboratory results , 2018, Astronomical Telescopes + Instrumentation.

[37]  Jean Surdej,et al.  L- and M-band annular groove phase mask in lab performance assessment on the vortex optical demonstrator for coronagraphic applications , 2019, Journal of Astronomical Telescopes, Instruments, and Systems.

[38]  M. Kenworthy,et al.  The Single-mode Complex Amplitude Refinement (SCAR) coronagraph , 2018, Astronomy & Astrophysics.

[39]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[40]  Gordon A. H. Walker,et al.  Speckle Noise and the Detection of Faint Companions , 1999 .

[41]  James Roger P. Angel,et al.  A high-contrast coronagraph for the MMT using phase apodization: design and observations at 5 microns and 2 λ/D radius , 2006, SPIE Astronomical Telescopes + Instrumentation.

[42]  Olivier Absil,et al.  Taking the vector vortex coronagraph to the next level for ground- and space-based exoplanet imaging instruments: review of technology developments in the USA, Japan, and Europe , 2011, Optical Engineering + Applications.

[43]  Michael J. Escuti,et al.  Polarization Gratings: A Novel Polarimetric Component for Astronomical Instruments , 2010 .

[44]  Nick Cvetojevic,et al.  Review of high-contrast imaging systems for current and future ground-based and space-based telescopes III: technology opportunities and pathways , 2018, Astronomical Telescopes + Instrumentation.

[45]  John E. Krist,et al.  The Vector Vortex Coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization , 2010, Astronomical Telescopes + Instrumentation.

[46]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[47]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[48]  David S. Doelman,et al.  High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator , 2018, Astronomical Telescopes + Instrumentation.

[49]  Miles J. Padgett,et al.  Observation of chromatic effects near a white-light vortex , 2003 .

[50]  D. Alter PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC , 2016 .

[51]  O. Guyon,et al.  Spatial linear dark field control and holographic modal wavefront sensing with a vAPP coronagraph on MagAO-X , 2019, Journal of Astronomical Telescopes, Instruments, and Systems.

[52]  Emiel Por,et al.  Optimal design of apodizing phase plate coronagraphs , 2017, Optical Engineering + Applications.

[53]  Jarron Leisenring,et al.  ALES: overview and upgrades , 2018, Astronomical Telescopes + Instrumentation.

[54]  Thanu Padmanabhan,et al.  Stars and stellar systems , 2001 .

[55]  Julien H. Girard,et al.  SPHERE: the exoplanet imager for the Very Large Telescope , 2019, Astronomy & Astrophysics.

[56]  Mamadou N'Diaye,et al.  Review of high-contrast imaging systems for current and future ground-based and space-based telescopes: Part II. Common path wavefront sensing/control and coherent differential imaging , 2018, Astronomical Telescopes + Instrumentation.

[57]  Frans Snik,et al.  The vector-APP: a broadband apodizing phase plate that yields complementary PSFs , 2012, Other Conferences.

[58]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[59]  Russell A. Chipman,et al.  HabEx polarization ray trace and aberration analysis , 2018, Astronomical Telescopes + Instrumentation.

[60]  B. Mennesson,et al.  Overview of LBTI: a multipurpose facility for high spatial resolution observations , 2016, Astronomical Telescopes + Instrumentation.

[61]  David M. Shemo,et al.  THE VECTOR VORTEX CORONAGRAPH: LABORATORY RESULTS AND FIRST LIGHT AT PALOMAR OBSERVATORY , 2009, 0912.2287.

[62]  Pierre Baudoz,et al.  Optimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance , 2016, 1610.05065.

[63]  Chulwoo Oh,et al.  Achromatic diffraction from polarization gratings with high efficiency. , 2008, Optics letters.

[64]  Remko Stuik,et al.  Combining high-dispersion spectroscopy with high contrast imaging : Probing rocky planets around our nearest neighbors , 2015, 1503.01136.

[65]  Ravi K. Komanduri,et al.  Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers. , 2013, Optics express.

[66]  Michael J. Escuti,et al.  Patterned liquid-crystal optics for broadband coronagraphy and wavefront sensing , 2017, Optical Engineering + Applications.