On relative ranks of full transformation semigroups

For a semigroup S and a set the relative rank of S modulo A is the minimal cardinality of a setB such that generates S. We show that the relative rank of an infinite full transformation semigroup modulo the symmetric group, and also modulo the set of all idempotent mappings, is equal to 2. We also characterise all pairs of mappings which, together with the symmetric group or the set of all idempotents, generate the full transformation semigroup.