Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues.

[1]  D. Hume,et al.  Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice , 2021, Journal of Hematology & Oncology.

[2]  J. Lévesque,et al.  Bacterial Lipopolysaccharides Suppress Erythroblastic Islands and Erythropoiesis in the Bone Marrow in an Extrinsic and G- CSF-, IL-1-, and TNF-Independent Manner , 2020, Frontiers in Immunology.

[3]  D. Hume,et al.  Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system , 2020, PLoS biology.

[4]  D. Hume,et al.  A Transgenic Line That Reports CSF1R Protein Expression Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System , 2020, The Journal of Immunology.

[5]  F. Ginhoux,et al.  Determinants of Resident Tissue Macrophage Identity and Function. , 2020, Immunity.

[6]  J. Lévesque,et al.  Imaging flow cytometry reveals that G-CSF treatment causes loss of erythroblastic islands in the mouse bone marrow. , 2020, Experimental hematology.

[7]  Y. Lam,et al.  Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche , 2019, Biophysical Reviews.

[8]  Yaomei Wang,et al.  Identification and transcriptome analysis of erythroblastic island macrophages. , 2019, Blood.

[9]  Patrick M. Helbling,et al.  Combined single-cell and spatial transcriptomics reveals the molecular, cellular and spatial bone marrow niche organization , 2019, Nature Cell Biology.

[10]  Michael Zhuo Wang,et al.  Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis , 2019, Cells.

[11]  F. Ginhoux,et al.  Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells , 2019, Cell.

[12]  S. Lewis,et al.  Structure and function of the immune system in the spleen , 2019, Science Immunology.

[13]  A. Perkins,et al.  HIF prolyl hydroxylase inhibitor FG-4497 enhances mouse hematopoietic stem cell mobilization via VEGFR2/KDR. , 2019, Blood advances.

[14]  D. Hume,et al.  The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. , 2019, Trends in immunology.

[15]  Jason D. Buenrostro,et al.  The cis-Regulatory Atlas of the Mouse Immune System , 2019, Cell.

[16]  James T. Webber,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018, Nature.

[17]  A. Shibuya,et al.  Identification and isolation of splenic tissue-resident macrophage sub-populations by flow cytometry , 2018, International immunology.

[18]  D. Hume,et al.  Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment. , 2018, Blood.

[19]  Huy Q. Dinh,et al.  Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow. , 2018, Cell reports.

[20]  Y. Mély,et al.  Lipid self-assembly and lectin-induced reorganization of the plasma membrane , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  J. Iredale,et al.  An efficient method to isolate Kupffer cells eliminating endothelial cell contamination and selective bias , 2018, Journal of leukocyte biology.

[22]  Michael C. Ostrowski,et al.  Csf1r-mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System , 2018, The Journal of Immunology.

[23]  Graça Raposo,et al.  Shedding light on the cell biology of extracellular vesicles , 2018, Nature Reviews Molecular Cell Biology.

[24]  M. Wullschleger,et al.  CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. , 2017, Biomaterials.

[25]  D. Hume,et al.  Identification of the macrophage‐specific promoter signature in FANTOM5 mouse embryo developmental time course data , 2017, Journal of leukocyte biology.

[26]  J. Paul Robinson,et al.  Guidelines for the use of flow cytometry and cell sorting in immunological studies. , 2017, European journal of immunology.

[27]  Gang Huang,et al.  Unraveling Macrophage Heterogeneity in Erythroblastic Islands , 2017, Front. Immunol..

[28]  I. Amit,et al.  Genomic Characterization of Murine Monocytes Reveals C/EBP&bgr; Transcription Factor Dependence of Ly6C− Cells , 2017, Immunity.

[29]  V. Kuchroo,et al.  Phagocytosis imprints heterogeneity in tissue-resident macrophages , 2017, The Journal of experimental medicine.

[30]  Dongsup Kim,et al.  A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis , 2017, Scientific Reports.

[31]  Tae-Young Roh,et al.  CD82/KAI1 Maintains the Dormancy of Long-Term Hematopoietic Stem Cells through Interaction with DARC-Expressing Macrophages. , 2016, Cell stem cell.

[32]  F. Ginhoux,et al.  Tissue-Resident Macrophage Ontogeny and Homeostasis. , 2016, Immunity.

[33]  B. McAllan,et al.  Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow , 2016, Microscopy and Microanalysis.

[34]  K. Nitta,et al.  Vascular-resident CD169-positive monocytes and macrophages control neutrophil accumulation in the kidney with ischemia-reperfusion injury. , 2015, Journal of the American Society of Nephrology : JASN.

[35]  Michael Poidinger,et al.  High-dimensional analysis of the murine myeloid cell system , 2014, Nature Immunology.

[36]  J. Paulson,et al.  Siglec-mediated regulation of immune cell function in disease , 2014, Nature Reviews Immunology.

[37]  J. Lévesque,et al.  Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island macrophages in the mouse. , 2014, Experimental hematology.

[38]  C. Abram,et al.  Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. , 2014, Journal of immunological methods.

[39]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[40]  M. Hickey,et al.  Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection , 2013, Nature Immunology.

[41]  H. Perlman,et al.  Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. , 2013, American journal of respiratory cell and molecular biology.

[42]  Kevin M. McBride,et al.  T Cell–Dependent IgM Memory B Cells Generated during Bacterial Infection Are Required for IgG Responses to Antigen Challenge , 2013, The Journal of Immunology.

[43]  S. Nutt,et al.  M-CSF instructs myeloid lineage fate in single haematopoietic stem cells , 2013, Nature.

[44]  A. Bergman,et al.  CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis, myeloablation and in JAK2V617F-induced polycythemia vera , 2012, Nature Medicine.

[45]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[46]  Amin R. Mazloom,et al.  Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages , 2012, Nature Immunology.

[47]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[48]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[49]  Tri Giang Phan,et al.  Subcapsular Sinus Macrophage Fragmentation and CD169+ Bleb Acquisition by Closely Associated IL-17-Committed Innate-Like Lymphocytes , 2012, PloS one.

[50]  G. Kraal,et al.  Innate Immune Functions of Macrophage Subpopulations in the Spleen , 2012, Journal of Innate Immunity.

[51]  M. Merad,et al.  Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche , 2011, The Journal of experimental medicine.

[52]  J. Lévesque,et al.  Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. , 2010, Blood.

[53]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[54]  J. Miyazaki,et al.  Participation of CD11b and F4/80 Molecules in the Conjunctival Eosinophilia of Experimental Allergic Conjunctivitis , 2009, International Archives of Allergy and Immunology.

[55]  R. Steinman,et al.  Antibody to Langerin/CD207 localizes large numbers of CD8α+ dendritic cells to the marginal zone of mouse spleen , 2009, Proceedings of the National Academy of Sciences.

[56]  David A. Hume,et al.  Osteal Tissue Macrophages Are Intercalated throughout Human and Mouse Bone Lining Tissues and Regulate Osteoblast Function In Vitro and In Vivo1 , 2008, The Journal of Immunology.

[57]  S. Gordon,et al.  EMR1, the human homolog of F4/80, is an eosinophil‐specific receptor , 2007, European journal of immunology.

[58]  Yasunobu Miyake,et al.  Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associated antigens. , 2007, The Journal of clinical investigation.

[59]  P. Crocker,et al.  Sialoadhesin-Deficient Mice Exhibit Subtle Changes in B- and T-Cell Populations and Reduced Immunoglobulin M Levels , 2006, Molecular and Cellular Biology.

[60]  C. Stokes,et al.  Validation of computer-assisted, pixel-based analysis of multiple-colour immunofluorescence histology. , 2005, Journal of immunological methods.

[61]  Michael C. Ostrowski,et al.  A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. , 2003, Blood.

[62]  Michael C. Ostrowski,et al.  Interaction between PU.1 and Another Ets Family Transcription Factor Promotes Macrophage-specific Basal Transcription Initiation* , 1998, The Journal of Biological Chemistry.

[63]  M. Filbin,et al.  Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily , 1994, Current Biology.

[64]  J. Lévesque,et al.  Flow cytometry measurement of bone marrow perfusion in the mouse and sorting of progenitors and stems cells according to position relative to blood flow in vivo. , 2012, Methods in molecular biology.

[65]  C. J. Barnett,et al.  Comparison of the expression and function of the transcription factor PU.1 (Spi-1 proto-oncogene) between murine macrophages and B lymphocytes. , 1994, Oncogene.

[66]  A. Bergman,et al.  Cd169 + Macrophages Provide a Niche Promoting Erythropoiesis under Homeostasis, Myeloablation and in Jak2v617f-induced Polycythemia Vera Hhs Public Access , 2022 .