Twitter Geolocation Prediction Using Neural Networks

Knowing the location of a user is important for several use cases, such as location specific recommendations, demographic analysis, or monitoring of disaster outbreaks. We present a bottom up study on the impact of text- and metadata-derived contextual features for Twitter geolocation prediction. The final model incorporates individual types of tweet information and achieves state-of-the-art performance on a publicly available test set. The source code of our implementation, together with pretrained models, is freely available at https://github.com/Erechtheus/geolocation.

[1]  David Ratcliffe,et al.  Finding Fires with Twitter , 2013, ALTA.

[2]  Cheng Guo,et al.  Entity Embeddings of Categorical Variables , 2016, ArXiv.

[3]  Timothy Baldwin,et al.  Geolocation Prediction in Social Media Data by Finding Location Indicative Words , 2012, COLING.

[4]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[5]  Derek Ruths,et al.  Geolocation Prediction in Twitter Using Social Networks: A Critical Analysis and Review of Current Practice , 2015, ICWSM.

[6]  Diana Inkpen,et al.  Estimating User Location in Social Media with Stacked Denoising Auto-encoders , 2015, VS@HLT-NAACL.

[7]  Stephen Wan,et al.  CSIRO Data61 at the WNUT Geo Shared Task , 2016, NUT@COLING.

[8]  Michael J. Paul,et al.  Twitter Improves Influenza Forecasting , 2014, PLoS currents.

[9]  Timothy Baldwin,et al.  Twitter Geolocation Prediction Shared Task of the 2016 Workshop on Noisy User-generated Text , 2016, NUT@COLING.

[10]  Timothy Baldwin,et al.  Text-Based Twitter User Geolocation Prediction , 2014, J. Artif. Intell. Res..

[11]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[12]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[13]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[14]  Timothy Baldwin,et al.  Lexical Normalisation of Short Text Messages: Makn Sens a #twitter , 2011, ACL.

[15]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[16]  Tomoki Taniguchi,et al.  A Simple Scalable Neural Networks based Model for Geolocation Prediction in Twitter , 2016, NUT@COLING.

[17]  Kwan Hui Lim,et al.  Geolocation Prediction in Twitter Using Location Indicative Words and Textual Features , 2016, NUT@COLING.

[18]  Tomas Mikolov,et al.  Bag of Tricks for Efficient Text Classification , 2016, EACL.

[19]  Timothy Baldwin,et al.  pigeo: A Python Geotagging Tool , 2016, ACL.

[20]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[21]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[22]  Mao Ye,et al.  Location recommendation for location-based social networks , 2010, GIS '10.

[23]  M. Williams,et al.  Knowing the Tweeters: Deriving Sociologically Relevant Demographics from Twitter , 2013 .