Power Factor Optimization of Distributed Generations in Distribution Networks Based on Improved Particle Swarm Optimization Method

The gradually extensive penetration of small-scale distributed renewable generators in existing medium-voltage power distribution networks highlights many technical challenges which call for urgent solutions from power utilities. This paper attempts to optimize the power factor of distributed generators (DGs) integrated in distribution networks and presents a novel algorithmic solution. With the aim of minimizing power loss whilst maintaining the node voltage, the problem is formulated with a mathematical model elaborating the DGs and a set of constraints in distribution networks and addressed through adopting an extended particle swarm optimization (PSO) approach. The suggested algorithm is assessed through numerical simulation experiments with the IEEE 33-bus system and the outcome shows that the optimization algorithm can effectively reduce the power loss and promote the node voltages across the overall distribution network.