EL inference for partially identified models: Large deviations optimality and bootstrap validity

This paper addresses the issue of optimal inference for parameters that are partially identified in models with moment inequalities. There currently exists a variety of inferential methods for use in this setting. However, the question of choosing optimally among contending procedures is unresolved. In this paper, I first consider a canonical large deviations criterion for optimality and show that inference based on the empirical likelihood ratio statistic is optimal. Second, I introduce a new empirical likelihood bootstrap that provides a valid resampling method for moment inequality models and overcomes the implementation challenges that arise as a result of non-pivotal limit distributions. Lastly, I analyze the finite sample properties of the proposed framework using Monte Carlo simulations. The simulation results are encouraging.

[1]  Francesca Molinari,et al.  Asymptotic Properties for a Class of Partially Identified Models , 2006 .

[2]  Adam M. Rosen,et al.  Confidence Sets for Partially Identified Parameters that Satisfy a Finite Number of Moment Inequalities , 2006 .

[3]  Jayanta K. Ghosh,et al.  On the Relation Among Shortest Confidence Intervals of Different Types , 1961 .

[4]  P. Stark,et al.  Minimax expected measure confidence sets for restricted location parameters , 2005 .

[5]  G. Imbens,et al.  Information Theoretic Approaches to Inference in Moment Condition Models , 1995 .

[6]  A. V. D. Vaart Asymptotic Statistics: Delta Method , 1998 .

[7]  Patrik Guggenberger,et al.  VALIDITY OF SUBSAMPLING AND “PLUG-IN ASYMPTOTIC” INFERENCE FOR PARAMETERS DEFINED BY MOMENT INEQUALITIES , 2007, Econometric Theory.

[8]  J. Pratt Length of Confidence Intervals , 1961 .

[9]  Ivan A. Canay,et al.  Hodges-Lehmann Optimality for Testing Moment Conditions , 2011 .

[10]  Ivan A. Canay Hodges-Lehmann Optimality for Testing Moment Condition Models ∗ , 2009 .

[11]  A. Madansky More on Length of Confidence Intervals , 1962 .

[12]  D. Andrews,et al.  ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP , 2009, Econometric Theory.

[13]  Anatolii A. Puhalskii,et al.  On large-deviation efficiency in statistical inference , 1998 .

[14]  Ofer Zeitouni,et al.  Correction to 'On Universal Hypotheses Testing Via Large Deviations' , 1991, IEEE Trans. Inf. Theory.

[15]  P. Sen,et al.  Constrained Statistical Inference: Inequality, Order, and Shape Restrictions , 2001 .

[16]  J. Horowitz,et al.  Nonparametric Analysis of Randomized Experiments with Missing Covariate and Outcome Data , 2000 .

[17]  Whitney K. Newey,et al.  Generalized Method of Moments, Efficient Bootstrapping, and Improved Inference , 2002 .

[18]  YUICHI KITAMURA,et al.  Preliminary Draft MINIMAX ESTIMATION AND TESTING FOR MOMENT CONDITION MODELS VIA LARGE DEVIATIONS , 2005 .

[19]  Kate Ho Insurer-Provider Networks in the Medical Care Market , 2005, The American economic review.

[20]  Andres Santos,et al.  Inference in Nonparametric Instrumental Variables With Partial Identification , 2012 .

[21]  L. Brown,et al.  Optimal Confidence Sets, Bioequivalence, and the Limaçon of Pascal , 1995 .

[22]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[23]  D. Andrews Inconsistency of the Bootstrap when a Parameter is on the Boundary of the Parameter Space , 2000 .

[24]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[25]  A. Galichon,et al.  Dilation Bootstrap: A Natural Approach to Inference in Incomplete Models , 2006 .

[26]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[27]  Francesca Molinari Partial Identi…cation of Probability Distributions with Misclassi…ed Data , 2004 .

[28]  Federico A. Bugni Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set , 2010 .

[29]  C. Gouriéroux,et al.  Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters , 1982 .

[30]  Federico A. Bugni Bootstrap Inference in Partially Identi…ed Models , 2009 .

[31]  Frank A. Wolak,et al.  An Exact Test for Multiple Inequality and Equality Constraints in the Linear Regression Model , 1987 .

[32]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[33]  C. Manski Partial Identification of Probability Distributions , 2003 .

[34]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[35]  Thomas J. DiCiccio,et al.  Empirical Likelihood is Bartlett-Correctable , 1991 .

[36]  J. Hahn,et al.  Specification testing under moment inequalities , 2008 .

[37]  Marc Henry,et al.  Inference in Incomplete Models , 2006, 2102.12257.

[38]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[39]  V. Chernozhukov,et al.  Inference on parameter sets in econometric models , 2006 .

[40]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure , 2008 .

[41]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[42]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[43]  Yuichi Kitamura,et al.  Empirical Likelihood Methods in Econometrics: Theory and Practice , 2006 .

[44]  Elie Tamer,et al.  Market Structure and Multiple Equilibria in the Airline Industry , 2009 .

[45]  Charles F. Manski,et al.  Censoring of Outcomes and Regressors Due to Survey Nonresponse: Identification and estimation Using Weights and Imputations , 1998 .

[46]  Frank A. Wolak,et al.  The Local Nature of Hypothesis Tests Involving Inequality Constraints in Nonlinear Models , 1991 .

[47]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[48]  Peter M. Hooper Invariant Confidence Sets with Smallest Expected Measure , 1982 .

[49]  G. Chamberlain Asymptotic efficiency in estimation with conditional moment restrictions , 1987 .

[50]  Steven Berry,et al.  Confidence Regions for Parameters in Discrete Games with Multiple Equilibria, with an Application to Discount Chain Store Location , 2004 .

[51]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .

[52]  W. Hoeffding Asymptotically Optimal Tests for Multinomial Distributions , 1965 .

[53]  Frank Schorfheide,et al.  Empirical Likelihood Estimation with Inequality Moment Constraints , 2005 .

[54]  E. Tamer Incomplete Simultaneous Discrete Response Model with Multiple Equilibria , 2003 .

[55]  A. Cohen,et al.  Admissibility Implications for Different Criteria in Confidence Estimation , 1973 .

[56]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[57]  A. Kudô,et al.  A multivariate analogue of the one-sided test , 1963 .

[58]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection , 2007 .

[59]  Frank Schorfheide,et al.  Estimation with overidentifying inequality moment conditions , 2009 .

[60]  S. Varadhan,et al.  Large deviations , 2019, Graduate Studies in Mathematics.

[61]  Whitney K. Newey,et al.  Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators , 2003 .

[62]  Frank Schorfheide,et al.  Boosting Your Instruments: Estimation with Overidentifying Inequality Moment Conditions , 2006 .

[63]  Azeem M. Shaikh,et al.  Inference for the identified set in partially identified econometric models , 2006 .

[64]  Jonathan M. Borwein,et al.  Partially-Finite Programming in L1 and the Existence of Maximum Entropy Estimates , 1993, SIAM J. Optim..

[65]  Taisuke Otsu Asymptotic Optimality of Empirical Likelihood for Selecting Moment Restrictions , 2005 .

[66]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[67]  Takuhisa Shikimi Large deviations for kernel-type empirical distributions , 2002 .

[68]  Azeem M. Shaikh,et al.  Inference for identifiable parameters in partially identified econometric models , 2006 .

[69]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[70]  C. Manski Anatomy of the Selection Problem , 1989 .

[71]  C. Manski,et al.  Inference on Regressions with Interval Data on a Regressor or Outcome , 2002 .