Fast Fourier transforms: a tutorial review and a state of the art

Note: V. K. Madisetti, D. B. Williams, Eds. Reference LCAV-CHAPTER-2005-009 Record created on 2005-06-27, modified on 2017-05-12

[1]  Ken'iti Kido,et al.  A new FFT algorithm of radix 3, 6, and 12 , 1986, IEEE Trans. Acoust. Speech Signal Process..

[2]  J. Martens Recursive cyclotomic factorization--A new algorithm for calculating the discrete Fourier transform , 1984 .

[3]  H. Nussbaumer,et al.  Fast computation of discrete Fourier transforms using polynomial transforms , 1979 .

[4]  R. Mersereau,et al.  A unified treatment of Cooley-Tukey algorithms for the evaluation of the multidimensional DFT , 1981 .

[5]  Martin Vetterli Running FIR and IIR filtering using multirate filter banks , 1988, IEEE Trans. Acoust. Speech Signal Process..

[6]  R. Yavne,et al.  An economical method for calculating the discrete Fourier transform , 1899, AFIPS Fall Joint Computing Conference.

[7]  L. Morris Automatic generation of time efficient digital signal processing software , 1977 .

[8]  S. Winograd Arithmetic complexity of computations , 1980 .

[9]  E. Brigham,et al.  The fast Fourier transform , 2016, IEEE Spectrum.

[10]  C. Rader,et al.  A new principle for fast Fourier transformation , 1976 .

[11]  H. W. Schüssler,et al.  Signal processing II : theories and applications : proceedings of EUSIPCO-83, Second European Signal Processing Conference, Erlangen, W.-Germany, September 12-16, 1983 , 1983 .

[12]  H. V. Sorensen,et al.  A new efficient algorithm for computing a few DFT points , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[13]  Harvey F. Silverman Further corrections to "An introduction to programming the winograd Fourier transform algorithm (WFTA)" , 1978 .

[14]  G. Rivard Direct fast Fourier transform of bivariate functions , 1977 .

[15]  C. Burrus,et al.  An in-place, in-order prime factor FFT algorithm , 1981 .

[16]  C. Burrus Index mappings for multidimensional formulation of the DFT and convolution , 1977 .

[17]  C. Temperton Self-sorting mixed-radix fast Fourier transforms , 1983 .

[18]  C. Burrus,et al.  Fast one-dimensional digital convolution by multidimensional techniques , 1974 .

[19]  Wen-Hsiung Chen,et al.  A Fast Computational Algorithm for the Discrete Cosine Transform , 1977, IEEE Trans. Commun..

[20]  R. Bracewell Discrete Hartley transform , 1983 .

[21]  R. W. Johnson,et al.  A methodology for designing, modifying, and implementing Fourier transform algorithms on various architectures , 1990 .

[22]  Pierre Duhamel,et al.  Algorithms meeting the lower bounds on the multiplicative complexity of length-2n DFTs and their connection with practical algorithms , 1990, IEEE Trans. Acoust. Speech Signal Process..

[23]  C. Sidney Burrus,et al.  On computing the split-radix FFT , 1986, IEEE Trans. Acoust. Speech Signal Process..

[24]  Marshall C. Pease,et al.  An Adaptation of the Fast Fourier Transform for Parallel Processing , 1968, JACM.

[25]  H. Nawab,et al.  Bounds on the minimum number of data transfers in WFTA and FFT programs. [Winograd Fourier Transform Algorithms and Fast Fourier Transform] , 1979 .

[26]  Z. Mou,et al.  Fast FIR filtering: algorithms and implementations , 1987 .

[27]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[28]  C. Burrus,et al.  The design of optimal DFT algorithms using dynamic programming , 1982, ICASSP.

[29]  M. Vetterli,et al.  Simple FFT and DCT algorithms with reduced number of operations , 1984 .

[30]  G. Goertzel An Algorithm for the Evaluation of Finite Trigonometric Series , 1958 .

[31]  Pierre Duhamel,et al.  Un algorithme de transformation de Fourier rapide à double base , 1985 .

[32]  Jean Vuillemin,et al.  A combinatorial limit to the computing power of V.L.S.I. circuits , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[33]  T. Kailath,et al.  VLSI and Modern Signal Processing , 1984 .

[34]  David C. Munson,et al.  Floating point roundoff error in the prime factor FFT , 1981 .

[35]  J. O. Eklundh,et al.  A Fast Computer Method for Matrix Transposing , 1972, IEEE Transactions on Computers.

[36]  R. Bracewell The fast Hartley transform , 1984, Proceedings of the IEEE.

[37]  Henri J. Nussbaumer,et al.  Computation of Convolutions and Discrete Fourier Transforms by Polynomial Transforms , 1978, IBM J. Res. Dev..

[38]  Victor Y. Pan The Additive and Logical Complexities of Linear and Bilinear Arithmetic Algorithms , 1983, J. Algorithms.

[39]  Martin Vetterli,et al.  Improved Fourier and Hartley transform algorithms: Application to cyclic convolution of real data , 1987, IEEE Trans. Acoust. Speech Signal Process..

[40]  Richard E. Blahut,et al.  Fast Algorithms for Digital Signal Processing , 1985 .

[41]  S. Winograd,et al.  Abelian semi-simple algebras and algorithms for the Discrete Fourier Transform , 1984 .

[42]  W. Stammler,et al.  Error analysis and resulting structural improvements for fixed point FFTs , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[43]  S. Winograd,et al.  New algorithms for the multidimensional discrete Fourier transform , 1983 .

[44]  Pierre Duhamel,et al.  A connection between bit-reverse and matrix transpose, hardware and software consequences , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[45]  Jacques Morgenstern,et al.  The Linear Complexity of Computation , 1975, JACM.

[46]  Jr. Earl E. Swartzlander,et al.  VLSI Signal Processing Systems , 1985 .

[47]  S. Winograd On the multiplicative complexity of the Discrete Fourier Transform , 1979 .

[48]  G. Bergland,et al.  A radix-eight fast Fourier transform subroutine for real-valued series , 1969 .

[49]  Charles M. Rader,et al.  Number theory in digital signal processing , 1979 .

[50]  Michael A. Soderstrand,et al.  Residue number system arithmetic: modern applications in digital signal processing , 1986 .

[51]  David M. W. Evans An improved digit-reversal permutation algorithm for the fast Fourier and Hartley transforms , 1987, IEEE Trans. Acoust. Speech Signal Process..

[52]  L. Morris,et al.  A comparative study of time efficient FFT and WFTA programs for general purpose computers , 1978 .

[53]  P. Duhamel,et al.  New 2nDCT algorithms suitable for VLSI implementation , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[54]  G. Bruun z-transform DFT filters and FFT's , 1978 .

[55]  Pierre Duhamel,et al.  Existence of a 2n FFT algorithm with a number of multiplications lower than 2n+1 , 1984 .

[56]  K. R. Rao,et al.  Orthogonal Transforms for Digital Signal Processing , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[57]  B. Lee A new algorithm to compute the discrete cosine Transform , 1984 .

[58]  S. Winograd On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Pierre Duhamel,et al.  Implementation of "Split-radix" FFT algorithms for complex, real, and real-symmetric data , 1986, IEEE Trans. Acoust. Speech Signal Process..

[60]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[61]  P. Duhamel,et al.  `Split radix' FFT algorithm , 1984 .

[62]  Alvin M. Despain,et al.  Very Fast Fourier Transform Algorithms Hardware for Implementation , 1979, IEEE Transactions on Computers.

[63]  Soo-Chang Pei,et al.  Split-vector radix 2-D fast Fourier transform , 1987 .

[64]  Pierre Duhamel,et al.  In-place butterfly-style FFT of 2-D real sequences , 1988, IEEE Trans. Acoust. Speech Signal Process..

[65]  Howard C. Card,et al.  VLSI computations: from physics to algorithms , 1987, Integr..

[66]  R. Singleton An algorithm for computing the mixed radix fast Fourier transform , 1969 .

[67]  Michael T. Heideman,et al.  Computation of an odd-length DCT from a real-valued DFT of the same length , 1992, IEEE Trans. Signal Process..

[68]  Joseph H. Rothweiler Implementation of the in-order prime factor transform for variable sizes , 1982 .

[69]  R. Preuss,et al.  Very fast computation of the radix-2 discrete Fourier transform , 1982 .

[70]  Thompson Fourier Transforms in VLSI , 1983, IEEE Transactions on Computers.

[71]  Martin Vetterli,et al.  Fast 2-D discrete cosine transform , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[72]  Gabor C. Temes,et al.  Real-factor FFT algorithms , 1978, ICASSP.

[73]  Douglas L. Jones,et al.  Real-valued fast Fourier transform algorithms , 1987, IEEE Trans. Acoust. Speech Signal Process..

[74]  Harvey F. Silverman,et al.  Corrections and an addendum to "An introduction to programming the winograd Fourier transform algorithm (WFTA)" , 1978 .

[75]  Alan V. Oppenheim Papers on digital signal processing , 1969 .

[76]  C. Rader Discrete Fourier transforms when the number of data samples is prime , 1968 .

[77]  Martin Vetterli,et al.  Split-radix algorithms for length-pm DFT's , 1989, IEEE Trans. Acoust. Speech Signal Process..

[78]  G. D. Bergland,et al.  A fast Fourier transform algorithm using base 8 iterations , 1968 .

[79]  Pierre Duhamel,et al.  On computing the inverse DFT , 1988, IEEE Trans. Acoust. Speech Signal Process..

[80]  Martin Vetterli,et al.  A Discrete Fourier-Cosine Transform Chip , 1986, IEEE J. Sel. Areas Commun..

[81]  R. Stasinski Easy generation of small-Ndiscrete Fourier transform algorithms , 1986 .

[82]  R. Mersereau,et al.  The representation of two-dimensional sequences as one-dimensional sequences , 1974 .

[83]  H. Nussbaumer Fast Fourier transform and convolution algorithms , 1981 .

[84]  Alvin M. Despain,et al.  Fourier Transform Computers Using CORDIC Iterations , 1974, IEEE Transactions on Computers.

[85]  Ramesh C. Agarwal,et al.  Fourier Transform and Convolution Subroutines for the IBM 3090 Vector Facility , 1986, IBM J. Res. Dev..

[86]  E. Dubois,et al.  A new algorithm for the radix-3 FFT , 1978 .

[87]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[88]  Michael T. Heideman Multiplicative complexity, convolution, and the DFT , 1988 .

[89]  Jean Vuillemin,et al.  A Combinatorial Limit to the Computing Power of VLSI Circuits , 1983, IEEE Transactions on Computers.

[90]  H. J. Nussbaumer,et al.  Digital filtering using polynomial transforms , 1977 .

[91]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[92]  C S. Burrus Efficient Fourier transform and convolution algorithms , 1987 .

[93]  Irving John Good,et al.  The Interaction Algorithm and Practical Fourier Analysis , 1958 .

[94]  Anil K. Jain,et al.  A Sinusoidal Family of Unitary Transforms , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[95]  P. Welch A fixed-point fast Fourier transform error analysis , 1969 .

[96]  T. Parks,et al.  A prime factor FFT algorithm using high-speed convolution , 1977 .

[97]  Harvey F. Silverman,et al.  An introduction to programming the Winograd Fourier transform algorithm (WFTA) , 1977 .

[98]  Martin Vetterli Analysis, synthesis and computational complexity of digital filter banks , 1986 .

[99]  C. Sidney Burrus,et al.  On the number of multiplications necessary to compute a length-2nDFT , 1986, IEEE Trans. Acoust. Speech Signal Process..

[100]  B. K. Bhagavan,et al.  Fast Computational Algorithms for Bit Reversal , 1974, IEEE Transactions on Computers.

[101]  C. Sidney Burrus Unscrambling for fast DFT algorithms , 1988, IEEE Trans. Acoust. Speech Signal Process..

[102]  Jean-Marc Delosme,et al.  Highly concurrent computing structures for matrix arithmetic and signal processing , 1982, Computer.