Fatigue Performance Improvement in AISI 4140 Steel by Dynamic Strain Aging and Dynamic Precipitation During Warm Laser Shock Peening

[1]  Bong-Joong Kim,et al.  Nucleation of highly dense nanoscale precipitates based on warm laser shock peening , 2010 .

[2]  G. Cheng,et al.  Warm Laser Shock Peening Driven Nanostructures and Their Effects on Fatigue Performance in Aluminum Alloy 6160 , 2010 .

[3]  E. Kerscher,et al.  Increasing the fatigue limit of a bearing steel by dynamic strain ageing , 2008 .

[4]  Zhenqiang Yao,et al.  Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd:YAG pulsed laser , 2008 .

[5]  I. Nikitin,et al.  Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600 °C , 2007 .

[6]  I. Altenberger,et al.  Effect of high-temperature deep rolling on cyclic deformation behavior of solution-heat-treated Al–Mg–Si–Cu alloy , 2007 .

[7]  I. Altenberger,et al.  Residual stress relaxation of deep-rolled Al–Mg–Si–Cu alloy during cyclic loading at elevated temperatures , 2006 .

[8]  I. Altenberger,et al.  Fatigue behavior of deep rolled Al–Mg–Si–Cu alloy at elevated temperature , 2006 .

[9]  T. Malis,et al.  Recent advances in FIB–TEM specimen preparation techniques , 2006 .

[10]  Yasuhito Mori,et al.  Shock Hugoniot for Biological Materials , 2006 .

[11]  L. Ye,et al.  Laser shock peening Performance and process simulation , 2006 .

[12]  Ken-ichiro Mori,et al.  Effect of processing temperature on warm shot peening of spring steel , 2005 .

[13]  H. Maier,et al.  High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304 , 2004 .

[14]  R. Kuo,et al.  Dynamic strain aging and grain size reduction effects on the fatigue resistance of SA533B3 steels , 2004 .

[15]  Eric A. Stach,et al.  An in situ transmission electron microscopy study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening , 2003 .

[16]  Y. Mai,et al.  Laser shock processing and its effects on microstructure and properties of metal alloys: a review , 2002 .

[17]  V. Schulze,et al.  Optimized warm peening of the quenched and tempered steel AISI 4140 , 2002 .

[18]  V. Schulze,et al.  Effects of warm peening on fatigue life and relaxation behaviour of residual stresses in AISI 4140 steel , 2000 .

[19]  J. Jonas,et al.  Static and dynamic strain aging in 304 austenitic stainless steel at elevated temperatures , 2000 .

[20]  R. Fabbro,et al.  SHOCK WAVES FROM A WATER-CONFINED LASER-GENERATED PLASMA , 1997 .

[21]  N. Hansen,et al.  High angle boundaries formed by grain subdivision mechanisms , 1997 .

[22]  M. Meyers,et al.  High-strain, high-strain-rate behavior of tantalum , 1995 .

[23]  F. Lawrence,et al.  Effects of laser-shock processing on the microstructure and surface mechanical properties of hadfield manganese steel , 1995 .

[24]  R. W. Reynoldson,et al.  Advances in surface treatments using fluidised beds , 1995 .

[25]  J. Duffy,et al.  Shear band formation in 4340 steel: A TEM study☆ , 1994 .

[26]  P. Ballard,et al.  Physical study of laser-produced plasma in confined geometry , 1990 .

[27]  A. DeArdo,et al.  The effect of dynamic precipitation and recrystallization on the hot flow behavior of a Nb-V microalloyed steel , 1983 .

[28]  G. Cooper Strengthening methods in crystals: Edited by A. Kelly and R. B. Nicholson Elsevier, Amsterdam, London, New York (1971) 627 pp, £12.50 , 1971 .

[29]  Laurent Berthe,et al.  Current trends in laser shock processing , 1998 .

[30]  W. Spitzig,et al.  Dynamic strain aging as a strengthening mechanism in iron and iron-phosphorus alloys , 1975 .