Geodetic Number versus Hull Number in P3-Convexity
暂无分享,去创建一个
Dieter Rautenbach | Lucia Draque Penso | Carmen C. Centeno | V. G. Pereira de Sá | D. Rautenbach | V. P. D. Sá | L. Penso | Carmen C. Centeno
[1] Stéphane Pérennes,et al. The Power of Small Coalitions in Graphs , 2003, Discret. Appl. Math..
[2] Nicola Santoro,et al. An improved testing scheme for catastrophic fault patterns , 2000, Inf. Process. Lett..
[3] D. Rautenbach,et al. An upper bound on the P 3-Radon number Mitre , 2012 .
[4] John W. Moon,et al. Embedding tournaments in simple tournaments , 1972, Discret. Math..
[5] Simone Dantas,et al. Convex Partitions of Graphs induced by Paths of Order Three , 2010, Discret. Math. Theor. Comput. Sci..
[6] Fred S. Roberts,et al. Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion , 2009, Discret. Appl. Math..
[7] David Peleg,et al. Local majorities, coalitions and monopolies in graphs: a review , 2002, Theor. Comput. Sci..
[8] Éva Tardos,et al. Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..
[9] Jayme Luiz Szwarcfiter,et al. Irreversible conversion of graphs , 2011, Theor. Comput. Sci..
[10] Béla Bollobás,et al. Random majority percolation , 2010, Random Struct. Algorithms.
[11] Béla Bollobás,et al. Sharp thresholds in Bootstrap percolation , 2003 .
[12] Nabil H. Mustafa,et al. Listen to Your Neighbors: How (Not) to Reach a Consensus , 2004, SIAM J. Discret. Math..
[13] E. C. Milner,et al. Some remarks on simple tournaments , 1972 .
[14] Jayme Luiz Szwarcfiter,et al. On the Carathéodory Number for the Convexity of Paths of Order Three , 2011, SIAM J. Discret. Math..
[15] Peter J. Slater,et al. Fundamentals of domination in graphs , 1998, Pure and applied mathematics.
[16] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .