A Practical Method for the Sparse Resultant ( Extended Abstract )
暂无分享,去创建一个
[1] Bernd Sturmfels,et al. A polyhedral method for solving sparse polynomial systems , 1995 .
[2] B. Sturmfels,et al. Multigraded Resultants of Sylvester Type , 1994 .
[3] Bernd Sturmfels,et al. Product formulas for resultants and Chow forms , 1993 .
[4] John F. Canny,et al. An Efficient Algorithm for the Sparse Mixed Resultant , 1993, AAECC.
[5] Marc Chardin. The Resultant via a Koszul Complex , 1993 .
[6] Dinesh Manocha,et al. Multipolynomial resultants and linear algebra , 1992, ISSAC '92.
[7] Bernd Sturmfels,et al. Chow polytopes and general resultants , 1992 .
[8] John F. Canny,et al. An efficient approach to removing geometric degeneracies , 1992, SCG '92.
[9] Dinesh Manocha,et al. Real time inverse kinematics for general 6R manipulators , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.
[10] John Canny,et al. The complexity of robot motion planning , 1988 .
[11] Joe Warren,et al. On the Applications of Multi-Equational Resultants , 1988 .
[12] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[13] A. Khovanskii. Newton polyhedra and the genus of complete intersections , 1978 .
[14] D. N. Bernshtein. The number of roots of a system of equations , 1975 .
[15] R. Tennant. Algebra , 1941, Nature.
[16] A. B. BASSET,et al. Modern Algebra , 1905, Nature.
[17] W. Wells,et al. Modern higher algebra , 2022 .