The Convergence Rate and Asymptotic Distribution of the Bootstrap Quantile Variance Estimator for Importance Sampling

Importance sampling is a widely used variance reduction technique to compute sample quantiles such as value at risk. The variance of the weighted sample quantile estimator is usually a difficult quantity to compute. In this paper we present the exact convergence rate and asymptotic distributions of the bootstrap variance estimators for quantiles of weighted empirical distributions. Under regularity conditions, we show that the bootstrap variance estimator is asymptotically normal and has relative standard deviation of order O(n −1/4).

[1]  Dirk P. Kroese,et al.  Improved algorithms for rare event simulation with heavy tails , 2006, Advances in Applied Probability.

[2]  G. Babu A note on bootstrapping the variance of sample quantile , 1986 .

[3]  S. Asmussen,et al.  Rare events simulation for heavy-tailed distributions , 2000 .

[4]  Paul Glasserman,et al.  Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors , 2002 .

[5]  Lihua Sun,et al.  Asymptotic representations for importance-sampling estimators of value-at-risk and conditional value-at-risk , 2010, Oper. Res. Lett..

[6]  J. S. Maritz,et al.  A Note on Estimating the Variance of the Sample Median , 1978 .

[7]  J. Sadowsky On Monte Carlo estimation of large deviations probabilities , 1996 .

[8]  J. Blanchet,et al.  State-dependent importance sampling for regularly varying random walks , 2008, Advances in Applied Probability.

[9]  Paul Glasserman,et al.  Importance Sampling for Portfolio Credit Risk , 2005, Manag. Sci..

[10]  Marvin K. Nakayama,et al.  Confidence intervals for quantiles and value-at-risk when applying importance sampling , 2010, Proceedings of the 2010 Winter Simulation Conference.

[11]  P. Glynn,et al.  Efficient rare-event simulation for the maximum of heavy-tailed random walks , 2008, 0808.2731.

[12]  P. Major,et al.  Weak convergence and embedding , 1975 .

[13]  P. Major,et al.  An approximation of partial sums of independent RV's, and the sample DF. II , 1975 .

[14]  P. Glynn IMPORTANCE SAMPLING FOR MONTE CARLO ESTIMATION OF QUANTILES , 2011 .

[15]  R. Durrett Probability: Theory and Examples , 1993 .

[16]  C. Fuh,et al.  An Importance Sampling Method to Evaluate Value-at-Risk for Assets with Jump Risks * , 2009 .

[17]  Tze Leung Lai,et al.  Self-Normalized Processes , 2009 .

[18]  V. Statulevičius,et al.  Limit Theorems of Probability Theory , 2000 .

[19]  Herbert A. David,et al.  Order Statistics , 2011, International Encyclopedia of Statistical Science.

[20]  Lihua Sun,et al.  A general framework of importance sampling for value-at-risk and conditional value-at-risk , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[21]  J. Blanchet Efficient importance sampling for binary contingency tables , 2009, 0908.0999.

[22]  Kosuke Imai,et al.  Survey Sampling , 1998, Nov/Dec 2017.

[23]  P. Hall,et al.  Exact convergence rate of bootstrap quantile variance estimator , 1988 .

[24]  Jose Blanchet,et al.  Efficient importance sampling in ruin problems for multidimensional regularly varying random walks , 2010, Journal of Applied Probability.

[25]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[26]  P. Dupuis,et al.  Dynamic importance sampling for queueing networks , 2007, 0710.4389.

[27]  Henrik Hult,et al.  Efficient calculation of risk measures by importance sampling -- the heavy tailed case , 2009 .

[28]  Jose H. Blanchet,et al.  Efficient Monte Carlo for high excursions of Gaussian random fields , 2010, 1005.0812.

[29]  D. Siegmund Importance Sampling in the Monte Carlo Study of Sequential Tests , 1976 .

[30]  Gerardo Rubino,et al.  Introduction to Rare Event Simulation , 2009, Rare Event Simulation using Monte Carlo Methods.

[31]  Sandeep Juneja,et al.  Simulating heavy tailed processes using delayed hazard rate twisting , 1999, WSC '99.

[32]  Robert D. Tortora,et al.  Sampling: Design and Analysis , 2000 .

[33]  H. N. Nagaraja,et al.  Order Statistics, Third Edition , 2005, Wiley Series in Probability and Statistics.

[34]  Michael Falk,et al.  On the estimation of the quantile density function , 1986 .

[35]  Paul Glasserman,et al.  1 Importance Sampling and Stratification for Value-at-Risk , 1999 .

[36]  P. Glasserman,et al.  Variance Reduction Techniques for Estimating Value-at-Risk , 2000 .

[37]  R. R. Bahadur A Note on Quantiles in Large Samples , 1966 .

[38]  G. J. Babu,et al.  A Note on Bootstrapping the Sample Median , 1984 .

[39]  Peter W. Glynn,et al.  Fluid heuristics, Lyapunov bounds and efficient importance sampling for a heavy-tailed G/G/1 queue , 2007, Queueing Syst. Theory Appl..

[40]  P. Major,et al.  An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .

[41]  Paul Dupuis,et al.  Importance sampling for sums of random variables with regularly varying tails , 2007, TOMC.

[42]  P. Dupuis,et al.  Dynamic importance sampling for uniformly recurrent Markov chains , 2005, math/0503454.

[43]  Joseph W. McKean,et al.  A comparison of methods for studentizing the sample median , 1984 .

[44]  Simon J. Sheather,et al.  A finite sample estimate of the variance of the sample median , 1986 .