Enceladus: Cassini observations and implications for the search for life

Aims. The recent Cassini discovery of water vapor plumes ejected from the south pole of the Saturnian satellite, Enceladus, presents a unique window of opportunity for the detection of extant life in our solar system. Methods. With its significant geothermal energy source propelling these plumes >80 km from the surface of the moon and the ensuing large temperature gradient with the surrounding environment, it is possible to have the weathering of rocks by liquid water at the rock/liquid interface. For the cases of the putatively detected salt-water oceans beneath the ice crusts of Europa and Callisto, an isolated subsurface ocean without photosynthesis or contact with an oxidizing atmosphere will approach chemical equilibrium and annihilate any ecosystems dependent on redox gradients unless there is a substantial alternative energy source. This thermodynamic tendency imposes severe constraints on any biota that is based on chemical energy. On Enceladus, the weathering of rocks by liquid water and any concomitant radioactive emissions are possible incipient conditions for life. If there is CO, CO2 and NH3 present in the spectra obtained from the plume, then this is possible evidence that amino acids could be formed at the rock/liquid interface of Enceladus. The combination of a hydrological cycle, chemical redox gradient and geochemical cycle give favorable conditions for life. Results. We discuss the search for signatures of these species and organics in the Cassini UVIS spectra of the plume and implications for the possible detection of life.

[1]  Rafael Navarro-Gonzalez,et al.  Nitrogen fixation by volcanic lightning in the early Earth , 1998 .

[2]  D. Stevenson,et al.  Thermal state of an ice shell on Europa , 1989 .

[3]  Carl Sagan,et al.  Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life , 1992, Nature.

[4]  Henry B. Garrett,et al.  Energetic Ion and Electron Irradiation of the Icy Galilean Satellites , 2001 .

[5]  P. Cassen,et al.  Is there liquid water on Europa , 1979 .

[6]  JOHN S. Lewis,et al.  Carbonaceous chondrites and the origin of life , 1993, Origins of life and evolution of the biosphere.

[7]  Thomas M. Orlando,et al.  Far-out surface science: radiation-induced surface processes in the solar system , 2002 .

[8]  S A Benner,et al.  Borate Minerals Stabilize Ribose , 2004, Science.

[9]  Benjamin P. Weiss,et al.  MARS , PANSPERMIA , AND THE ORIGIN OF LIFE : WHERE DID IT ALL BEGIN ? by , 2001 .

[10]  J. Greenberg,et al.  The chemistry of life's origins , 1993 .

[11]  André Brack,et al.  The Chemistry of Life’s Origins , 2004 .

[12]  R. Greeley,et al.  Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.

[13]  J. Richardson,et al.  A self‐consistent model of plasma and neutrals at Saturn: The ion tori , 2004 .

[14]  M. Kennish,et al.  Ecology of deep‐sea hydrothermal vent communities: A review , 1993 .

[15]  Sherwood Chang Prebiotic Synthesis in Planetary Environments , 1993 .

[16]  C. Chyba,et al.  Energy for microbial life on Europa , 2000, Nature.

[17]  Sascha Kempf,et al.  Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring , 2006, Science.

[18]  R. Jaumann,et al.  Composition and Physical Properties of Enceladus' Surface , 2006, Science.

[19]  A. Oparin [The origin of life]. , 1938, Nordisk medicin.

[20]  V. Tunnicliffe The biology of hydrothermal vents : Ecology and evolution , 1991 .

[21]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[22]  K. Yoshino,et al.  High‐resolution, VUV (147–201 nm) photoabsorption cross sections for C2H2 at 195 and 295 K , 1991 .

[23]  J. R. Esmond,et al.  Absorption cross section measurements of carbon dioxide in the wavelength region 118.7–175.5 nm and the temperature dependence , 1996 .

[24]  A Brack,et al.  Life in the solar system. , 1999, Advances in space research : the official journal of the Committee on Space Research.

[25]  Y. Yung,et al.  Enhancement of Deuterated Ethane on Jupiter , 2001 .

[26]  Robert L. Tokar,et al.  A test‐particle model of the atmosphere/ionosphere system of Saturn's main rings , 2006 .

[27]  J. R. Esmond,et al.  High resolution absorption cross-sections and band oscillator strengths of the Schumann-Runge bands of oxygen at 79 K , 1987 .

[28]  T. Kondow,et al.  Absorption spectra of hydrogen cyanide and deuterium cyanide in the 130-80 nm range , 1981 .

[29]  J. Schou,et al.  Sputtering of water ice surfaces and the production of extended neutral atmospheres , 1995 .

[30]  J. Richardson,et al.  Saturn: Search for a missing water source , 2002 .

[31]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[32]  R. Greeley,et al.  Europa: Initial Galileo Geological Observations , 1998 .

[33]  J. Kirschvink,et al.  Mars, Panspermia, and Origin of Life , 2003 .

[34]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[35]  M. Allen,et al.  Photochemistry of Saturn's Atmosphere: II. Effects of an Influx of External Oxygen , 2000 .

[36]  J. Nuth,et al.  The vacuum ultraviolet spectra of HCN, C2N2, and CH3CN , 1982 .

[37]  S. Epstein,et al.  Carbon, hydrogen and nitrogen isotopes in solvent-extractable organic matter from carbonaceous chondrites , 1982 .

[38]  L. C. Lee CN(A 2Πi→X 2Σ+) and CN(B 2Σ+→X 2Σ+) yields from HCN photodissociation , 1980 .

[39]  R E Johnson,et al.  Hydrogen peroxide on the surface of Europa. , 1999, Science.

[40]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[41]  B. Mauk,et al.  Ion sputtering and surface erosion at Europa , 1998 .

[42]  Anne P. Thorne,et al.  High-resolution photoabsorption cross section measurements of SO2, 2: 220 to 325 nm at 295 K , 2003 .

[43]  M. Ross,et al.  Tidal heating in an internal ocean model of Europa , 1987, Nature.

[44]  R E Johnson,et al.  The Interaction of the Atmosphere of Enceladus with Saturn's Plasma , 2006, Science.

[45]  F. Raulin Exo-Astrobiological Aspects of Europa and Titan: From Observations to Speculations , 2005 .

[46]  J. Kirschvink,et al.  Life in Ice-Covered Oceans , 1999, Science.