The role of prophage-like elements in the diversity of Salmonella enterica serovars.

[1]  A. Campbell,et al.  Lambdoid phages as elements of bacterial genomes (integrase/phage21/ Escherichia coli K-12/icd gene) , 2004, Genetica.

[2]  R. Kahmann,et al.  Nucleotide sequence of the immunity region of bacteriophage Mu , 2004, Molecular and General Genetics MGG.

[3]  J. Wain,et al.  Composition, Acquisition, and Distribution of the Vi Exopolysaccharide-Encoding Salmonella enterica Pathogenicity Island SPI-7 , 2003, Journal of bacteriology.

[4]  W. Hardt,et al.  The SopEΦ Phage Integrates into the ssrA Gene of Salmonella enterica Serovar Typhimurium A36 and Is Closely Related to the Fels-2 Prophage , 2003, Journal of bacteriology.

[5]  E. Boyd,et al.  Differences in Gene Content among Salmonella enterica Serovar Typhi Isolates , 2003, Journal of Clinical Microbiology.

[6]  G. Fournous,et al.  Phage as agents of lateral gene transfer. , 2003, Current opinion in microbiology.

[7]  Jürg Bähler,et al.  Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data , 2003, BMC Genomics.

[8]  P. Markham,et al.  Variation between Pathogenic Serovars within Salmonella Pathogenicity Islands , 2003, Journal of bacteriology.

[9]  A. Campbell The future of bacteriophage biology , 2003, Nature Reviews Genetics.

[10]  H. Ackermann,et al.  Bacteriophage observations and evolution. , 2003, Research in microbiology.

[11]  W. Jacobs,et al.  Origins of Highly Mosaic Mycobacteriophage Genomes , 2003, Cell.

[12]  Jonathan Frye,et al.  A non-redundant microarray of genes for two related bacteria. , 2003, Nucleic acids research.

[13]  Guy Plunkett,et al.  Comparative Genomics of Salmonellaenterica Serovar Typhi Strains Ty2 and CT18 , 2003, Journal of bacteriology.

[14]  Lynn K. Carmichael,et al.  A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis , 2003, Science.

[15]  G. Dougan,et al.  Genomic Comparison of Salmonella enterica Serovars and Salmonella bongori by Use of an S. enterica Serovar Typhimurium DNA Microarray , 2003, Journal of bacteriology.

[16]  W. Hardt,et al.  Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. , 2002, FEMS microbiology letters.

[17]  E. Boyd,et al.  Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. , 2002, Trends in microbiology.

[18]  L. Bossi,et al.  Differential accumulation of Salmonella[Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity , 2002, Molecular microbiology.

[19]  Mark Achtman,et al.  Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. , 2002, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[20]  Marjan,et al.  of Healthy Volunteers ) Mutations by ssaV Secretion System ( Pathogenicity Island 2 Type III Salmonella and aroC Derivatives Harboring Defined Salmonella enterica Characterization of , 2002 .

[21]  S. Porwollik,et al.  Evolutionary genomics of Salmonella: Gene acquisitions revealed by microarray analysis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Lake,et al.  Horizontal gene transfer in microbial genome evolution. , 2002, Theoretical population biology.

[23]  R. Hendrix,et al.  Bacteriophages: evolution of the majority. , 2002, Theoretical population biology.

[24]  L. Thomason,et al.  Gene products encoded in the ninR region of phage λ participate in Red‐mediated recombination , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[25]  C. Stratilo,et al.  Expression of the ExeAB complex of Aeromonas hydrophila is required for the localization and assembly of the ExeD secretion port multimer , 2002, Molecular microbiology.

[26]  J. Galán,et al.  Salmonella entry into host cells: the work in concert of type III secreted effector proteins. , 2001, Microbes and infection.

[27]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[28]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[29]  B. Barrell,et al.  Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. , 2001, Genome research.

[30]  W. Rabsch,et al.  Transfer of the Salmonella type III effector sopE between unrelated phage families. , 2001, Journal of molecular biology.

[31]  M. Aepfelbacher,et al.  SopE and SopE2 from Salmonella typhimurium Activate Different Sets of RhoGTPases of the Host Cell* , 2001, The Journal of Biological Chemistry.

[32]  J. Wain,et al.  The molecular mechanisms of severe typhoid fever. , 2001, Trends in microbiology.

[33]  R. Hakenbeck,et al.  Mosaic Genes and Mosaic Chromosomes: Intra- and Interspecies Genomic Variation of Streptococcus pneumoniae , 2001, Infection and Immunity.

[34]  T. Gingeras,et al.  Comparing genomes within the species Mycobacterium tuberculosis. , 2001, Genome research.

[35]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[36]  J. Slauch,et al.  Characterization of grvA, an Antivirulence Gene on the Gifsy-2 Phage in Salmonella enterica Serovar Typhimurium , 2001, Journal of bacteriology.

[37]  L. Bossi,et al.  Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella , 2001, Molecular microbiology.

[38]  F. Briani,et al.  The plasmid status of satellite bacteriophage P4. , 2001, Plasmid.

[39]  M. Hattori,et al.  Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[40]  G. Sherlock,et al.  A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  W Miller,et al.  Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. , 2000, Nucleic acids research.

[42]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[43]  J. Slauch,et al.  Tissue-Specific Gene Expression Identifies a Gene in the Lysogenic Phage Gifsy-1 That Affects Salmonella enterica Serovar Typhimurium Survival in Peyer's Patches , 2000, Journal of bacteriology.

[44]  D. A. Palmieri,et al.  The genome sequence of the plant pathogen Xylella fastidiosa , 2000, Nature.

[45]  S. Miller,et al.  A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Tao Liu,et al.  Interacting interfaces of the P4 antirepressor E and the P2 immunity repressor C , 2000, Molecular microbiology.

[47]  R. Hendrix,et al.  Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. , 2000, Journal of molecular biology.

[48]  F. Heffron,et al.  Salmonella SsrB activates a global regulon of horizontally acquired genes , 2000, Molecular microbiology.

[49]  B. Barrell,et al.  Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491 , 2000, Nature.

[50]  W. Rabsch,et al.  Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Samuel I. Miller,et al.  Bacteriophages in the evolution of pathogen-host interactions. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Y. Hou Transfer RNAs and pathogenicity islands. , 1999, Trends in biochemical sciences.

[53]  L. Bossi,et al.  Inducible prophages contribute to Salmonella virulence in mice , 1999, Molecular microbiology.

[54]  G. Schoolnik,et al.  Comparative genomics of BCG vaccines by whole-genome DNA microarray. , 1999, Science.

[55]  S. Miller,et al.  Identification of PhoP-PhoQ activated genes within a duplicated region of the Salmonella typhimurium chromosome. , 1998, Microbial pathogenesis.

[56]  K. Shearwin,et al.  The Tum Protein of Coliphage 186 Is an Antirepressor* , 1998, The Journal of Biological Chemistry.

[57]  W. Hardt,et al.  A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[58]  L. Bossi,et al.  Unsuspected prophage‐like elements in Salmonella typhimurium , 1997, Molecular microbiology.

[59]  R. Calendar,et al.  The two P2 Ogr-like domains of the delta protein from bacteriophage P4 are required for activity. , 1997, Virology.

[60]  J Hacker,et al.  Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution , 1997, Molecular microbiology.

[61]  I. Dodd,et al.  Defining the SOS operon of coliphage 186. , 1996, Virology.

[62]  I. Dodd,et al.  The Escherichia coli retrons Ec67 and Ec86 replace DNA between the cos site and a transcription terminator of a 186-related prophage. , 1996, Virology.

[63]  F. Heffron,et al.  Identification of a new iron regulated locus of Salmonella typhi. , 1996, Gene.

[64]  S. Howard,et al.  Isolation and characterization of a second exe operon required for extracellular protein secretion in Aeromonas hydrophila , 1994, Journal of bacteriology.

[65]  D G Higgins,et al.  CLUSTAL V: multiple alignment of DNA and protein sequences. , 1994, Methods in molecular biology.

[66]  E. Boyd,et al.  Salmonella reference collection B (SARB): strains of 37 serovars of subspecies I. , 1993, Journal of general microbiology.

[67]  S. Iida,et al.  DNA inversion regions Min of plasmid p15B and Cin of bacteriophage P1: evolution of bacteriophage tail fiber genes , 1992, Journal of bacteriology.

[68]  J. Sun,et al.  Association of a retroelement with a P4-like cryptic prophage (retronphage phi R73) integrated into the selenocystyl tRNA gene of Escherichia coli , 1991, Journal of bacteriology.

[69]  J. Musser,et al.  Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers , 1990, Infection and immunity.

[70]  S. Finkel,et al.  Nonessential region of bacteriophage P4: DNA sequence, transcription, gene products, and functions , 1990, Journal of virology.

[71]  M. Kahn,et al.  Integration of satellite bacteriophage P4 in Escherichia coli. DNA sequences of the phage and host regions involved in site-specific recombination. , 1987, Journal of molecular biology.

[72]  S. Iida,et al.  Sequence relations among the IncY plasmid p15B, P1, and P7 prophages. , 1986, Plasmid.

[73]  M. Chidambaram,et al.  Mutants of satellite virus P4 that cannot derepress their bacteriophage P2 helper. , 1981, Journal of molecular biology.

[74]  G. Bertani,et al.  Genetics of P2 and related phages. , 1971, Advances in genetics.

[75]  L. Bertani LYSOGENIC CONVERSION BY BACTERIOPHAGE P2 RESULTING IN AN INCREASED SENSITIVITY OF ESCHERICHIA COLI TO 5-FLUORODEOXYURIDINE. , 1964, Biochimica et biophysica acta.