A statistical mechanical interpretation of algorithmic information theory
暂无分享,去创建一个
[1] Rodney G. Downey,et al. Schnorr Randomness , 2002, Electron. Notes Theor. Comput. Sci..
[2] Nobuhiko Saitô,et al. Statistical Physics I : Equilibrium Statistical Mechanics , 1983 .
[3] Kohtaro Tadaki,et al. Fixed Points on Partial Randomness , 2009, FICS.
[4] Gregory J. Chaitin,et al. A recent technical report , 1974, SIGA.
[5] A. Nies. Computability and randomness , 2009 .
[6] Kohtaro Kohtaro. The Tsallis entropy and the Shannon entropy of a universal probability , 2008, 2008 IEEE International Symposium on Information Theory.
[7] Pavel Chigansky,et al. Asymptotic Stability of the Wonham Filter: Ergodic and Nonergodic Signals , 2002, SIAM J. Control. Optim..
[8] Kohtaro Tadaki. A statistical mechanical interpretation of algorithmic information theory: Total statistical mechanical interpretation based on physical argument , 2010 .
[9] Gregory. J. Chaitin,et al. Algorithmic information theory , 1987, Cambridge tracts in theoretical computer science.
[10] F. Stephan,et al. HIERARCHIES OF RANDOMNESS TESTS , 2006 .
[11] Rodney G. Downey,et al. On Schnorr and computable randomness, martingales, and machines , 2004, Math. Log. Q..
[12] R. Callen,et al. Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .
[13] Tatsuaki Wada,et al. Mathematical Aspects of Generalized Entropies and their Applications , 2010 .
[14] P. Dirac. Principles of Quantum Mechanics , 1982 .
[15] L. Levin,et al. THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .
[16] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[17] Cristian S. Calude,et al. Natural halting probabilities, partial randomness, and zeta functions , 2006, Inf. Comput..
[18] Pavel Chigansky. An ergodic theorem for filtering with applications to stability , 2006, Syst. Control. Lett..
[19] Klaus Weihrauch,et al. Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.
[20] Kohtaro Tadaki,et al. A Generalization of Chaitin's Halting Probability \Omega and Halting Self-Similar Sets , 2002, ArXiv.
[21] Marcus Hutter,et al. Algorithmic Information Theory , 1977, IBM J. Res. Dev..
[22] R. Bhattacharya. Criteria for Recurrence and Existence of Invariant Measures for Multidimensional Diffusions , 1978 .
[23] Kohtaro Tadaki,et al. A Statistical Mechanical Interpretation of Instantaneous Codes , 2007, 2007 IEEE International Symposium on Information Theory.
[24] D. Haar,et al. Statistical Physics , 1971, Nature.
[25] F. Reif,et al. Fundamentals of Statistical and Thermal Physics , 1965 .
[26] Bakhadyr Khoussainov,et al. Recursively enumerable reals and Chaitin Ω numbers , 1998 .
[27] G. Chaitin. Incompleteness theorems for random reals , 1987 .
[28] H. Kunita. Asymptotic behavior of the nonlinear filtering errors of Markov processes , 1971 .
[29] Cristian S. Calude,et al. On partial randomness , 2006, Ann. Pure Appl. Log..
[30] H. Callen. Thermodynamics and an Introduction to Thermostatistics , 1988 .
[31] Rodney G. Downey,et al. Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.
[32] Marian Boykan Pour-El,et al. Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.
[33] 只木 孝太郎. A Generalization of Chaitin's Halting Probability Ω and Halting Self-Similar Sets , 2001 .