Mutations affecting interaction of integrase with TNPO3 do not prevent HIV-1 cDNA nuclear import

[1]  A. Fassati,et al.  Transportin 3 Promotes a Nuclear Maturation Step Required for Efficient HIV-1 Integration , 2011, PLoS pathogens.

[2]  Torsten Schaller,et al.  HIV Integration Targeting: A Pathway Involving Transportin-3 and the Nuclear Pore Protein RanBP2 , 2011, PLoS pathogens.

[3]  R. Gijsbers,et al.  Interplay between HIV Entry and Transportin-SR2 Dependency , 2011, Retrovirology.

[4]  Ashok Chauhan,et al.  Perturbation of Host Nuclear Membrane Component RanBP2 Impairs the Nuclear Import of Human Immunodeficiency Virus -1 Preintegration Complex (DNA) , 2010, PloS one.

[5]  W. Greene,et al.  Abortive HIV Infection Mediates CD4 T Cell Depletion and Inflammation in Human Lymphoid Tissue , 2010, Cell.

[6]  F. Bushman,et al.  Structural Properties of HIV Integrase·Lens Epithelium-derived Growth Factor Oligomers* , 2010, The Journal of Biological Chemistry.

[7]  A. Engelman,et al.  Flexible use of nuclear import pathways by HIV-1. , 2010, Cell host & microbe.

[8]  S. A. Chow,et al.  Role of Human Immunodeficiency Virus Type 1 Integrase in Uncoating of the Viral Core , 2010, Journal of Virology.

[9]  A. Engelman,et al.  Retroviral intasome assembly and inhibition of DNA strand transfer , 2010, Nature.

[10]  J. Darlix,et al.  Analysis of the Viral Elements Required in the Nuclear Import of HIV-1 DNA , 2009, Journal of Virology.

[11]  Kenneth A. Matreyek,et al.  The Requirement for Cellular Transportin 3 (TNPO3 or TRN-SR2) during Infection Maps to Human Immunodeficiency Virus Type 1 Capsid and Not Integrase , 2009, Journal of Virology.

[12]  A. Engelman,et al.  Structural Basis for Functional Tetramerization of Lentiviral Integrase , 2009, PLoS pathogens.

[13]  Sarin Prakobwanakit,et al.  Integrase Interacts with Nucleoporin NUP153 To Mediate the Nuclear Import of Human Immunodeficiency Virus Type 1 , 2009, Journal of Virology.

[14]  D. Moras,et al.  Structural basis for HIV‐1 DNA integration in the human genome, role of the LEDGF/P75 cofactor , 2009, The EMBO journal.

[15]  J. Rain,et al.  Yeast two-hybrid detection of integrase-host factor interactions. , 2009, Methods.

[16]  A. Fassati,et al.  HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome , 2009, Retrovirology.

[17]  A. Engelman,et al.  A Novel Co-Crystal Structure Affords the Design of Gain-of-Function Lentiviral Integrase Mutants in the Presence of Modified PSIP1/LEDGF/p75 , 2009, PLoS pathogens.

[18]  A. Engelman,et al.  Dynamic Modulation of HIV-1 Integrase Structure and Function by Cellular Lens Epithelium-derived Growth Factor (LEDGF) Protein* , 2008, Journal of Biological Chemistry.

[19]  C. Calmels,et al.  In vitro initial attachment of HIV-1 integrase to viral ends: control of the DNA specific interaction by the oligomerization state , 2008, Nucleic acids research.

[20]  R. König,et al.  Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication , 2008, Cell.

[21]  J. Rain,et al.  Transportin-SR2 Imports HIV into the Nucleus , 2008, Current Biology.

[22]  A. Cereseto,et al.  HIV-1 Pre-Integration Complexes Selectively Target Decondensed Chromatin in the Nuclear Periphery , 2008, PloS one.

[23]  A. Engelman,et al.  The Lentiviral Integrase Binding Protein LEDGF/p75 and HIV-1 Replication , 2008, PLoS pathogens.

[24]  J. Lieberman,et al.  Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen , 2008, Science.

[25]  E. Poeschla,et al.  Integrase, LEDGF/p75 and HIV replication , 2008, Cellular and Molecular Life Sciences.

[26]  F. Bushman,et al.  Role of PSIP1/LEDGF/p75 in Lentiviral Infectivity and Integration Targeting , 2007, PloS one.

[27]  Laith Q Al-Mawsawi,et al.  Blocking interactions between HIV-1 integrase and cellular cofactors: an emerging anti-retroviral strategy. , 2007, Trends in pharmacological sciences.

[28]  M. Emerman,et al.  Evidence for Direct Involvement of the Capsid Protein in HIV Infection of Nondividing Cells , 2007, PLoS pathogens.

[29]  J. Hampe,et al.  Efficacy assessment of SNP sets for genome-wide disease association studies , 2007, Nucleic acids research.

[30]  A. Engelman,et al.  LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. , 2007, Genes & development.

[31]  S. Guadagnini,et al.  HIV‐1 DNA Flap formation promotes uncoating of the pre‐integration complex at the nuclear pore , 2007, The EMBO journal.

[32]  Xiaojian Yao,et al.  Interaction of Human Immunodeficiency Virus Type 1 Integrase with Cellular Nuclear Import Receptor Importin 7 and Its Impact on Viral Replication* , 2007, Journal of Biological Chemistry.

[33]  Youichi Suzuki,et al.  The road to chromatin — nuclear entry of retroviruses , 2007, Nature Reviews Microbiology.

[34]  J. Rain,et al.  Identification of the LEDGF/p75 binding site in HIV-1 integrase. , 2007, Journal of molecular biology.

[35]  A. Engelman,et al.  Structure-based mutagenesis of the integrase-LEDGF/p75 interface uncouples a strict correlation between in vitro protein binding and HIV-1 fitness. , 2007, Virology.

[36]  P. Cherepanov LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro , 2006, Nucleic acids research.

[37]  Ariberto Fassati,et al.  HIV infection of non-dividing cells: a divisive problem , 2006, Retrovirology.

[38]  Wulin Teo,et al.  An Essential Role for LEDGF/p75 in HIV Integration , 2006, Science.

[39]  S. Shorte,et al.  Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes , 2006, Nature Methods.

[40]  Jelle Hendrix,et al.  Overexpression of the Lens Epithelium-Derived Growth Factor/p75 Integrase Binding Domain Inhibits Human Immunodeficiency Virus Replication , 2006, Journal of Virology.

[41]  D. Jans,et al.  HIV-1 integrase is capable of targeting DNA to the nucleus via an Importin α/β-dependent mechanism , 2006 .

[42]  J. Rain,et al.  Inhibition of Early Steps of HIV-1 Replication by SNF5/Ini1* , 2006, Journal of Biological Chemistry.

[43]  M. Llano,et al.  Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. , 2006, Journal of molecular biology.

[44]  M. Stevenson,et al.  Modest but Reproducible Inhibition of Human Immunodeficiency Virus Type 1 Infection in Macrophages following LEDGFp75 Silencing , 2006, Journal of Virology.

[45]  C. Aiken,et al.  Evidence for a Functional Link between Uncoating of the Human Immunodeficiency Virus Type 1 Core and Nuclear Import of the Viral Preintegration Complex , 2006, Journal of Virology.

[46]  C. Van den Haute,et al.  Transient and Stable Knockdown of the Integrase Cofactor LEDGF/p75 Reveals Its Role in the Replication Cycle of Human Immunodeficiency Virus , 2006, Journal of Virology.

[47]  Z. Debyser,et al.  Cellular co-factors of HIV-1 integration. , 2006, Trends in biochemical sciences.

[48]  Michael Emerman,et al.  Retroviral infection of non-dividing cells: old and new perspectives. , 2006, Virology.

[49]  Paul Shinn,et al.  A role for LEDGF/p75 in targeting HIV DNA integration , 2005, Nature Medicine.

[50]  A. Engelman,et al.  Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Emerman,et al.  The Cell Cycle Independence of HIV Infections Is Not Determined by Known Karyophilic Viral Elements , 2005, PLoS pathogens.

[52]  M. Stevenson,et al.  Importin 7 May Be Dispensable for Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus Infection of Primary Macrophages , 2005, Journal of Virology.

[53]  Myriam Witvrouw,et al.  Integrase Mutants Defective for Interaction with LEDGF/p75 Are Impaired in Chromosome Tethering and HIV-1 Replication* , 2005, Journal of Biological Chemistry.

[54]  D. Grandgenett,et al.  Recombinant Human Immunodeficiency Virus Type 1 Integrase Exhibits a Capacity for Full-Site Integration In Vitro That Is Comparable to That of Purified Preintegration Complexes from Virus-Infected Cells , 2005, Journal of Virology.

[55]  A. Engelman,et al.  Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75 , 2005, Nature Structural &Molecular Biology.

[56]  R. Benarous,et al.  The Interaction of LEDGF/p75 with Integrase Is Lentivirus-specific and Promotes DNA Binding* , 2005, Journal of Biological Chemistry.

[57]  A. Engelman,et al.  Class II Integrase Mutants with Changes in Putative Nuclear Localization Signals Are Primarily Blocked at a Postnuclear Entry Step of Human Immunodeficiency Virus Type 1 Replication , 2004, Journal of Virology.

[58]  Pamela A Silver,et al.  Human cell proteins and human immunodeficiency virus DNA integration. , 2004, Frontiers in bioscience : a journal and virtual library.

[59]  Takeshi Yoshida,et al.  Role of Nup98 in nuclear entry of human immunodeficiency virus type 1 cDNA. , 2004, Microbes and infection.

[60]  G. Kalpana,et al.  Interaction between Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Integrase Proteins , 2004, Journal of Virology.

[61]  P. Sonigo,et al.  Analysis of Early Human Immunodeficiency Virus Type 1 DNA Synthesis by Use of a New Sensitive Assay for Quantifying Integrated Provirus , 2003, Journal of Virology.

[62]  Ian F. Harrison,et al.  Nuclear import of HIV‐1 intracellular reverse transcription complexes is mediated by importin 7 , 2003, The EMBO journal.

[63]  Zeger Debyser,et al.  HIV-1 Integrase Forms Stable Tetramers and Associates with LEDGF/p75 Protein in Human Cells* , 2003, The Journal of Biological Chemistry.

[64]  J. Tazi,et al.  A conserved Drosophila transportin-serine/arginine-rich (SR) protein permits nuclear import of Drosophila SR protein splicing factors and their antagonist repressor splicing factor 1. , 2002, Molecular biology of the cell.

[65]  D. Grandgenett,et al.  Efficient Concerted Integration by Recombinant Human Immunodeficiency Virus Type 1 Integrase without Cellular or Viral Cofactors , 2002, Journal of Virology.

[66]  Wei Yang,et al.  Structure of a two‐domain fragment of HIV‐1 integrase: implications for domain organization in the intact protein , 2001, The EMBO journal.

[67]  M. Lai,et al.  Transportin-SR2 mediates nuclear import of phosphorylated SR proteins , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  S. Goff,et al.  Characterization of Intracellular Reverse Transcription Complexes of Human Immunodeficiency Virus Type 1 , 2001, Journal of Virology.

[69]  R. Siliciano,et al.  Latency and viral persistence in HIV-1 infection. , 2000, The Journal of clinical investigation.

[70]  P. Tauc,et al.  Determinants of Mg2+-dependent activities of recombinant human immunodeficiency virus type 1 integrase. , 2000, Biochemistry.

[71]  M. Lai,et al.  A Human Importin-β Family Protein, Transportin-SR2, Interacts with the Phosphorylated RS Domain of SR Proteins* , 2000, The Journal of Biological Chemistry.

[72]  Jennifer L. Bachorik,et al.  Transportin-SR, a Nuclear Import Receptor for SR Proteins , 1999, The Journal of cell biology.

[73]  J. Kappes,et al.  Human Immunodeficiency Virus Type 1 Integrase Protein Promotes Reverse Transcription through Specific Interactions with the Nucleoprotein Reverse Transcription Complex , 1999, Journal of Virology.

[74]  G. Blobel,et al.  Viral Protein R Regulates Docking of the HIV-1 Preintegration Complex to the Nuclear Pore Complex* , 1998, The Journal of Biological Chemistry.

[75]  G. Blobel,et al.  Viral protein R regulates nuclear import of the HIV‐1 pre‐integration complex , 1998, The EMBO journal.

[76]  P. Silver,et al.  HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. , 1998, Genes & development.

[77]  T. Hope,et al.  HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[78]  F. Bushman,et al.  Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition , 1997, Journal of virology.

[79]  D. Trono,et al.  Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import , 1996, Journal of virology.

[80]  F. Bushman,et al.  HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase , 1995, Cell.

[81]  L. Karageorgos,et al.  Characterization of HIV replication complexes early after cell-to-cell infection. , 1993, AIDS research and human retroviruses.

[82]  M. Bukrinsky,et al.  Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[83]  P. Brown,et al.  Integration of murine leukemia virus DNA depends on mitosis. , 1993, The EMBO journal.

[84]  F. Bushman,et al.  Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[85]  M. Malim,et al.  Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes , 1991, The Journal of experimental medicine.

[86]  W. Haseltine,et al.  Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex , 1991, Journal of virology.

[87]  F. Bushman,et al.  Retroviral DNA integration directed by HIV integration protein in vitro. , 1990, Science.

[88]  P. Brown,et al.  Human immunodeficiency virus integration in a cell-free system , 1990, Journal of virology.

[89]  W. Haseltine,et al.  Integration of human immunodeficiency virus type 1 DNA in vitro. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[90]  D. Jans,et al.  HIV-1 integrase is capable of targeting DNA to the nucleus via an importin alpha/beta-dependent mechanism. , 2006, The Biochemical journal.